SUBMITTED TO: Alaska Department of Transportation & Public Facilities 2301 Peger Road Fairbanks, Alaska 99709

^{BY:} Shannon & Wilson, Inc. 2355 Hill Road Fairbanks, Alaska 99709

(907) 479-0600 www.shannonwilson.com

FINAL

SUMMARY REPORT March 2019 through January 2020 Water Supply Well Monitoring KING SALMON, ALASKA

SHANNON & WILSON

October 2021 Shannon & Wilson No: 102582-009

PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

Submitted To: Alaska Department of Transportation & Public Facilities 2301 Peger Road Fairbanks, Alaska 99709 Attn: Sammy Cummings and Marcus Zimmerman

Subject: FINAL SUMMARY REPORT, MARCH 2019 THROUGH JANUARY 2020 WATER SUPPLY WELL MONITORING, KING SALMON, ALASKA

Shannon & Wilson prepared this report to summarize the water supply well monitoring services performed March 2019 through January 2020. The services were conducted on behalf of the Alaska Department of Transportation & Public Facilities (DOT&PF). The scope of services was specified in Shannon & Wilson's revised proposal dated April 16, 2020 authorized on May 21, 2020 by DOT&PF under the Professional Services Agreement Number 25-19-1-013 Per- and Polyfluoroalkyl Substance (PFAS) Related Environmental & Engineering Services.

This report was prepared for the DOT&PF in accordance with the terms and conditions of Shannon & Wilson's contract, relevant DEC guidance documents, and Title 18 of the Alaska Administrative Code (AAC) Chapter 75.335.

Shannon & Wilson appreciates the opportunity to be of service to DOT&PF on this project. If you have questions concerning this report, please contact us.

Sincerely,

SHANNON & WILSON, INC.

Muchan

Michael Jaramilio Senior Chemist Role: Environmental Lead

VTY:MXJ:KRF:AMJ:CBD/vty

riburger

Kristen Freiburger Associate Role: Project Manager

1	Intro	duction1							
	1.1	Purpose and Objective1							
	1.2	Background1							
	1.3	Geology and Hydrology							
	1.4	Contaminants of Concern and Action Levels							
	1.5	Scope of Services							
2	Wat	er Supply Well Activities7							
	2.1	Water Supply Well Search7							
	2.2	Water Supply Well Survey8							
	2.3	Initial Water Supply Well Sampling9							
	2.4	Sample Custody, Storage, and Transport11							
	2.5	Special Considerations for PFAS Sampling11							
	2.6	Notification of Results							
	2.7	Water Supply Well Monitoring Criteria							
	2.8	Quarterly and Annual Monitoring							
	2.9	Alternative Water Sources							
		2.9.1 AKNPW-20414							
		2.9.2 AKNPW-00314							
	2.10	Public Information							
	2.11	Deviations16							
3	Ana	lytical Results							
	3.1	March 2019 Initial Sampling Results							
	3.2	July 2019 Annual/Quarterly Monitoring Results							
	3.3	Quarterly Monitoring Results							
	3.4	DEC Drinking Water Program Samples17							
4	Qua	lity Assurance and Quality Control							
5	Plan	ned and Future Work18							
6	Disc	russion of Results and Recommendations18							
	6.1	Comparison to Action Levels							

	6.2	Trend Analysis	.18
	6.3	Recommendations	.19
7	Refe	rences	20

Exhibits

Exhibit 1-1: DEC Sample Locations	3
Exhibit 1-2: Applicable Regulatory Action Levels	6
Exhibit 2-1: Potentially PFAS Impacted Water Supply Wells	9
Exhibit 2-2: Photographs of Water Supply Well Search and Initial Sampling	10
Exhibit 2-3: Water Supply Wells Meeting Initial Monitoring Criteria	13

Tables

Table 1:	December 2018 DEC Analytical Results
Table 2:	March 2019 Initial Water Supply Well Analytical Results
Table 3:	Historical Summary of Water Supply Well Analytical Results
Table 4:	May 2019 DEC Drinking Water Program Analytical Results
Table 5:	King Salmon Water Supply Well Trend Summary

Figures

Figure 1:	Vicinity Map
Figure 2:	Well Search Extent
Figure 3:	Highest Reported Water Supply Well Analytical Results

Appendices

Appendix A: Analytical Reports and Associated LDRCs Appendix B: Field Forms Appendix C: Public Information Appendix D: QA/QC Summary Important Information

AAC	Alaska Administrative Code
AFFF	aqueous film forming foam
AKN	King Salmon Airport Terminal
ARFF	aircraft rescue and firefighting
bgs	below ground surface
°Č	degrees Celsius
COC	chain-of-custody
DEC	Alaska Department of Environmental Conservation
DRM	Alaska Department of Administration Division of Risk Management
DONA	4,8-dioxa-3H-perfluorononanoic acid
DOT&PF	Alaska Department of Transportation & Public Facilities
EPA	U.S. Environmental Protection Agency
FAA	Federal Aviation Administration
HFPO-DA	hexafluoropropylene oxide dimer acid
KSD	King Salmon Divert
LCS/LCSD	laboratory control spike/laboratory control spike duplicate
LDRC	Laboratory Data Review Checklist
LHA	Lifetime Health Advisory
LOD	limits of detection
LOQ	limit of quantification
MAROS	Monitoring and Remediation Optimization System
MS/MSD	matrix spike/matrix spike duplicate
µg/kg	microgram per kilogram
μS/cm	microsiemens per centimeter
N-EtFOSAA	N-ethyl perfluorooctane sulfonamidoacetic acid
N-MeFOSAA	N-methyl perfluorooctane sulfonamidoacetic acid
ng/L	nanograms per liter
PFAS	per- and polyfluoroalkyl substances
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFTeA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUnA	perfluororoundecanoic acid
PSDI	PFAS Site Discovery Investigation
ppt	parts per trillion

QA/QC	quality assurance/quality control
RPD	relative percent difference
SGS	SGS North America, Inc.
TestAmerica	Eurofins/TestAmerica Labs, Inc.
TDS	total dissolved solids
USAF	United States Air Force
WO	work order
YSI	multiprobe water quality meter
11Cl-PF3OUdS	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid
9Cl-PF3ONS	9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid

1 INTRODUCTION

Shannon & Wilson, Inc. has prepared this summary report to document the initial well search and water supply well sampling, and quarterly/annual monitoring efforts at and near the King Salmon Airport (AKN) Terminal in King Salmon, Alaska. This report addresses activities conducted between March 2019 to January 2020 for the ongoing project. The AKN is an active Alaska Department of Environmental Conservation (DEC) contaminated site due to the presence of per- and polyfluoroalkyl substances (PFAS) in water supply well samples collected by DEC in December 2018 (File Number 2569.38.033, Hazard ID 26981).

1.1 Purpose and Objective

The purpose of the services described in this report was to evaluate the potential for human exposure to PFAS-containing water in water supply wells. Shannon & Wilson's objectives were to identify water supply wells potentially affected by PFAS contamination at and near the AKN, collect analytical groundwater samples for the analysis of PFAS from potentially affected water supply wells, and to establish and implement quarterly and annual monitoring criteria. Section 1.5 outlines the scope of services implemented to achieve these objectives.

1.2 Background

The AKN is located at 1 King Salmon Airport Road in King Salmon, Alaska. King Salmon sits north of the Naknek River in the Bristol Bay Borough (Figure 1). Figure 2 shows the AKN with the initial water supply well search area and identifies known aircraft rescue and firefighting (ARFF) sites associated with aqueous film forming foam (AFFF) releases. The geographic coordinates of the AKN terminal are latitude 58.6767 N, longitude -156.6492 W.

The AKN property was an active United States Air Force (USAF) installation known as King Salmon Divert (KSD) during the 1930s through the 1950s. During the 1940s, the land was used for aircraft storage and fuel stops for World War II. Ownership transferred to the Federal Aviation Administration (FAA) following World War II and remained a federal property until transferred to Alaska upon statehood in 1959. The USAF withdrew remaining permanent military personnel and aircraft from the KSD in 1994 but continues to lease multiple parcels of land surrounding the existing runway.

The airport meets the requirements defined in Title 14, Code of Federal Regulations, Part 139, which requires specific certification through the FAA. This certification requires,

among other things, ARFF to ensure safety in air transportation. As part of this certification, Part 139 Airports are required to conduct annual ARFF training for emergency response situations using AFFF in order to demonstrate compliance with the regulations. The FAA modified the requirement to use PFAS-containing AFFF during training exercises at the beginning of 2019; allowing the implementation of an FAA approved cart to test fire apparatus systems without discharging AFFF.

PFAS-containing AFFF was reportedly first used on AKN property in the 1970s. AFFF has been known to be stored on AKN property and used for training purposes on the AKN runway and additional locations on DOT&PF property. CH2M's March 2018 Preliminary Assessment Report for Perfluorinated Compounds, King Salmon Divert, Alaska summarized 11 known AFFF-release locations from old training areas located on the KSD. Discussions with DOT&PF staff revealed additional sites near the AKN runway where AFFF has been used for DOT&PF training and emergency response purposes. The precise locations of the DOT&PF training areas are unknown.

On August 20, 2018, the DEC published a Technical Memorandum outlining a new action level for the sum of five PFAS (perfluorooctanesulfonic acid [PFOS], perfluorooctanoic acid [PFOA], perfluorohexanesulfonic acid [PFHxS], perfluoroheptanoic acid [PFHpA], and perfluorononanoic acid [PFNA]) in drinking water. The action levels proposed in the August 2018 Technical Memorandum were submitted as proposed regulation. PFAS projects for the State of Alaska adopted the proposed regulatory action level from August 2018 to March 2019, per DEC direction. On April 9, 2019, DEC issued an amendment to its August 20, 2018 Technical Memorandum to realign the states action level with the U.S. Environmental Protection Agency (EPA) Lifetime Health Advisory (LHA) of 70 parts per trillion (ppt) for the sum of PFOS and PFOA. On October 2, 2019, DEC published a Technical Memorandum amending the April 9, 2019 Technical Memorandum and adding an additional testing requirement to analyze for and report all analytes for the appropriate PFAS analytical method, although the action level remains 70 ppt for the sum of PFOS and PFOA.

In late 2018, as part of a Cooperative Agreement with the EPA, the DEC Contaminated Sites Program conducted a limited PFAS Site Discovery Investigation (PSDI). This included identification of potentially PFAS impacted communities, prioritization of identified communities, collecting water supply well samples for the analysis of PFAS, and reporting. The AKN was identified as a potentially PFAS impacted community and DEC sampled the 9 water supply wells listed in Exhibit 1-1 below. The PFAS results of one water supply well exceeded the then DEC PFAS action level at that time for the sum of five PFAS (70 ppt, PFOS + PFOA + PFHxS + PFHpA + PFNA).

DEC Sample Name	Exceeds DEC Action Level ¹
KIN-01	No
KIN-02	No
KIN-03	Yes
KIN-04	Yes
KIN-05	No
KIN-06	No
KIN-07	No
KIN-08	No
KIN-09	No
KIN-10	No
KIN-11	No

Exhibit 1-1: DEC Sample Locations

Notes:

1 DEC PFAS action level for the sum of five PFAS (70 ppt; PFOS + PFOA + PFHxS + PFHpA + PFNA). DEC = Alaska Department of Environmental Conservation; ppt = parts per trillion

Shannon & Wilson reviewed the analytical data provided by DEC and performed an internal quality assurance/quality control (QA/QC) assessment of the analytical data and completed a DEC laboratory data review checklist (LDRC). The Eurofins/TestAmerica Labs, Inc. (TestAmerica) work order (WO) 580-82900-1 and the associated LDRC are included in Appendix A. Only one sample and its field duplicate had PFAS results exceeding the DEC action level at the time the samples were collected. Table 1 summarizes the PFAS analytical results from DEC's PDSI at and near the AKN. Shannon & Wilson notes DEC submitted samples from the AKN and the Dillingham Airport concurrently; WO 580-82900-1 contains PFAS results for both airports. This report does not include any other reference to the King Salmon Airport PFAS results obtained by DEC.

1.3 Geology and Hydrology

The King Salmon area is underlain by glacial outwash plain sediments (Feulner, 1963). Known areas of permafrost exist along Eskimo Creek and west of the confluence of Eskimo Creek and Naknek River. Multiple USAF reports between 1985 and 2006 describe and characterize three aquifers under King Salmon, denoted as A, B, and C. In their *Final Uniform Federal Policy – Quality Assurance Project Plan for Site Inspections of Aqueous Film Forming Foam Areas, KSD, Alaska,* dated July 2019, CH2M provided the following discussion of the hydrogeology in the area surrounding the King Salmon Air Force Station: Intense glaciation occurred during the Pleistocene period over much of the Alaska Peninsula, which produced the outwash sediment underlying much of KSD. At least three aquifer units are known to be present in the King Salmon area. These aquifers consist of unconsolidated, well-sorted to poorly sorted silty and gravelly sands, separated by aquitard units consisting of silty sands, silts, and clays. The aquitards separating these aquifers may be discontinuous (Science Applications International Corporation [SAIC], 1992).

The shallowest aquifer, the A-Aquifer, is unconfined and comprised of moderately well-sorted sands and silty sands with discontinuous lenses of medium- to coarse-grained gravel at the base. The A-Aquifer outcrops in many areas within KSD, and the total depth to the A-Aquifer ranges from ground surface at water bodies and wetlands, to 45 feet below ground surface (bgs) along the northern margin of KSD. The saturated thickness ranges from 0 to 15 feet. Groundwater movement is generally toward local topographic lows and surface drainages such as wetlands, rivers, creeks, and ditches, and is most likely recharged by precipitation and surface water. Major drainages such as the Eskimo and Red Fox Creeks have eroded through the A-Aquifer. At the base of the A-Aquifer is a zone of lower hydraulic conductivity, consisting of a gravelly clayey silt and sandy silt, referred to as the A-Aquitard. The underlying A-Aquitard is from 7 to 22 feet thick (USAF, 2017b). The A-Aquitard has previously been reported to locally disrupt and modify the regional unconfined groundwater flow pattern (A-Aquifer) in some areas when encountered at its thickest points (SAIC, 1992). Some drinking water wells downgradient of the KSD may be screened in the A-Aquifer.

The top of the B-Aquifer has been encountered at depths ranging from 50 to 80 feet bgs. The known thickness of this aquifer ranges from 15 to 40 feet. The B-Aquifer is situated in interbedded sequences of silty sands, sandy gravels, and silty sandy gravels. A second aquitard (the B-Aquitard) is present at the base of the B-Aquifer. The thickness of this B-Aquitard is estimated at between 10 and 120 feet (USAF, 2017b). This unit is comprised of predominantly sandy clay (SAIC, 1992). Groundwater in the B-Aquifer is probably in equilibrium with the A-Aquifer; similar piezometric surface has been measured in adjacent A-Aquifer and B-Aquifer monitoring wells. Groundwater flow direction in the B-Aquifer is south towards the Naknek River. Numerous residential drinking water-supply wells are screened in this aquifer.

The C-Aquifer underlies the B-Aquitard at a depth of approximately 205 feet bgs. KSD watersupply wells are reported to terminate in the C-Aquifer, which is thought to be a confined aquifer. The aquifer thickness and flow direction are unknown for the C-Aquifer (Paug-Vik Services [PVS], 2009a). Limited data from water supply well No. 5 suggest that the thickness of C-Aquifer is at least 20 feet (SAIC, 1992).

1.4 Contaminants of Concern and Action Levels

The primary contaminants of concern are PFOS and PFOA. As previously mentioned in Section 1.2, the October 2, 2019 DEC Technical Memorandum requires reporting for all PFAS analytes listed in a given analytical method. For the purposes of this project, samples were submitted for analytical method EPA Method 537.1 which includes the following list of 18 PFAS.

- PFOS
- PFOA
- PFHpA
- PFNA
- PFHxS
- perfluorobutanesulfonic acid (PFBS)
- perfluorodecanoic acid (PFDA)
- perfluorododecanoic acid (PFDoA)
- perfluorohexanoic acid (PFHxA)
- perfluorotetradecanoic acid (PFTeA)
- perfluorotridecanoic acid (PFTrDA)
- perfluoroundecanoic acid (PFUnA)
- hexafluoropropylene oxide dimer acid (HFPO-DA)
- N-ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)
- N-methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)
- 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)
- 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS)
- 4,8-dioxa-3H-perfluorononanoic acid (DONA)

Of these contaminants of concern, only PFOS and PFOA are regulated with numeric action levels or cleanup levels, as summarized in Exhibit 1-2.

Exhibit 1-2: Applicable Regulatory Action Levels

Media	Analyte	Action Level ¹
Drinking water ²	PFOS + PFOA	70 ppt
Crown dwystar ³	PFOS	400 ppt
Groundwater	PFOA	400 ppt
Ca:14	PFOS	3.0 µg/kg
30II ⁻	PFOA	1.7 µg/kg

Notes:

1 ppt is equivalent to nanograms per liter (ng/L) and micrograms per kilogram (µg/kg)

2 ppt is equivalent to ng/L and ng/kg

3 Drinking water action level reported in DEC October 2019 Technical Memorandum.

4 DEC groundwater cleanup level reported in 18 AAC 75.345, Table C.

5 DEC migration to groundwater soil cleanup levels reported in 18 AAC 75.341, Table B1.

µg/kg = micrograms per kilogram, ng/kg = nanograms per kilogram, ng/L = nanograms per liter, ppt = parts per trillion

1.5 Scope of Services

Shannon & Wilson's scope of services summarized in this report includes the following:

- Conducting a water supply well search at and near the AKN to identify potentially PFAS impacted properties (Section 2.1);
- As practicable, completing water supply well surveys for each identified property within the search area to determine the presence or absence of a water supply well on the property and categorizing identified water supply wells based on water usage as defined by the water supply well owner/user (Section 2.2);
- Conducting initial water supply well sampling for PFAS for the wells identified in the search area (Section 2.3). Sample custody, storage, and transport is described in Section 2.4;
- Notifying the project team (DOT&PF, DEC, the Alaska Department of Health & Social Services [DHSS], and the Alaska Department of Administration, Division of Risk Management [DRM], as applicable) and residents of the analytical results of the PFAS sampling (Section 2.6).
- Establishing quarterly and annual water supply well monitoring criteria (Section 2.7);
- Implementing PFAS monitoring for those water supply wells meeting monitoring criteria (Section 2.8);
- Performing a QA/QC evaluation of the analytical data and field forms completed for this project; (Section 4); and
- Reporting findings.

This report provides a summary of the scope of services described above in addition to the source of alternative water provided to water supply well owners/users with wells exceeding the action level (Section 2.9), and public information provided (Section 2.10). Planned and future work and recommendations are described in Sections 5 and 6.3, respectively.

This report was prepared for the exclusive use of the DOT&PF and its representatives. This work presents Shannon & Wilson's professional judgment as to the conditions of the site. Information presented here is based on the sampling and analyses Shannon & Wilson performed. This report should not be used for other purposes without Shannon & Wilson's approval or if any of the following occurs:

- Project details change, or new information becomes available, such as revised regulatory levels or the discovery of additional source areas.
- Conditions change due to natural forces or human activity at, under, or adjacent to the project site.
- Assumptions stated in this report have changed.
- If the site ownership or land use has changed.
- Regulations, laws, or cleanup levels change.
- If the site's regulatory status has changed.

If any of these occur, Shannon & Wilson should be retained to review the applicability of the above recommendations. This report should not be used for other purposes without Shannon & Wilson's review. If a service is not specifically indicated in this report, do not assume it was performed.

2 WATER SUPPLY WELL ACTIVITIES

This section summarizes water supply well activities performed as a part of this project from March 2019 through January 2020.

2.1 Water Supply Well Search

In March 2019, Shannon & Wilson Staff began the initial water supply well search by gathering information about the AKN, including but not limited to groundwater flow direction, surface water flow direction, suspected source area locations, DEC's PSDI analytical results (Section 1.2 and Table 1), well depths, and other relevant information available for the site to identify potentially PFAS-impacted properties and water supply

wells. Based on this information and in coordination with DOT&PF and DEC, a well search area was defined prior to the sampling event (Figure 2). One hundred thirty-six structures were identified within the search area 1.

2.2 Water Supply Well Survey

In March 2019, Shannon & Wilson staff began the water supply well survey which involved contacting owners/occupants of the 136 properties identified in the search area, as practicable, to determine the presence or absence of a water supply well on the property and obtain pertinent water supply well information. This was accomplished over the telephone, via email, and during initial sampling events through door-to-door visits using Private Well Inventory Survey Forms. During the door-to-door effort an attempt was made to contact the owner or occupant of each identified property in the search area. Our attempts included, if occupants were not present at the time the property was visited, personalized door tags were left in a location where it would be noticed and calling businesses if phone numbers were available. Copies of the completed Private Well Inventory Survey Forms are included in Appendix B.

During the water supply well survey effort, many locations were found to share wells with neighboring structures and 21 water supply wells were identified as described in Exhibit 2-1 below (20 water supply wells during the initial sampling effort and one additional location was sampled during subsequent monitoring events). Water supply wells were categorized to assess exposure risk by use as follows based on information provided by the water supply well owner/user.

- Category 1: wells used for drinking or cooking.
- Category 2: wells used for dish washing and other domestic purposes.
- Category 3: wells used for vegetable-garden irrigation and are not plumbed to indoor faucets or spigots. The well water is accessed by outdoor plumbing, but the well may be located underneath or inside the structure. These wells are considered non-drinkingwater wells.
- Category 4: wells used for outdoor purposes only, such as irrigation of lawns or non-vegetable gardens or vehicle washing. These wells are considered non-drinking-water wells.

Category 5: wells currently not in use. Wells that have been abandoned in place, are inoperable, disconnected, or intended for future use, are considered category 5 wells. These wells are considered non-drinking-water-wells.

Location ID ^a	DEC Sample ID	Water Supply Well Category
AKNPW-001	KIN-01	2
AKNPW-003	KIN-03 / KIN-04	1
AKNPW-005	KIN-05	1
AKNPW-006	KIN-06	1
AKNPW-007	KIN-07	1
AKNPW-008	KIN-08	1
AKNPW-009	KIN-09	1
AKNPW-010	KIN-10	1
AKNPW-011	KIN-11	1
AKNPW-012	-	1
AKNPW-013	-	1
AKNPW-014	-	1
AKNPW-015	-	1
AKNPW-016	-	2
AKNPW-017	-	1
AKNPW-018 ^b	-	1
AKNPW-020	-	1
AKNPW-204	-	1
AKNPW-208	-	1
AKNPW-422	-	1
AKNPW-424	-	2

Exhibit 2-1: Potentially PFAS Impacted Water Supply Wells

Notes:

a. Sample IDs were assigned by Shannon & Wilson staff during the water supply well search.

b. Sample ID AKNPW-018 was surveyed during the July 2019 sampling event.

2.3 Initial Water Supply Well Sampling

From March 14 through 18, 2019, Shannon & Wilson staff sampled 20 water supply wells identified during the well search and survey. Exhibit 2-1 details the Location ID, DEC Sample ID, as applicable, and the address/location description. Samples were named based on the Location IDs.

The following Shannon & Wilson personnel collected analytical water samples for the March 2019 initial sampling and/or subsequent monitoring events. These individuals are State of Alaska Qualified Samplers per 18 AAC 75.333[b] and 18 AAC 78.088[b].

EWSHANNON & WILSON

- Amber Masters, Environmental Scientist
- Craig Beebe, Geologist
- Cherissa Dukelow, Environmental Scientist
- Kristen Freiburger, Senior Chemist
- Alena Voigt, Environmental Scientist

Exhibit 2-2: Photographs of Water Supply Well Search and Initial Sampling.

Shannon & Wilson field staff collected water supply well samples from a location in the plumbing upstream of water treatment systems or water softeners. For the purposes of this project, Shannon & Wilson does not consider small (i.e., less than 18 inches in height) particulate filters to be treatment systems.

Water supply well systems were purged prior to sampling by allowing the water to run until water parameters stabilized and the water appeared clear. Shannon & Wilson field staff measured these parameters using a multiprobe water quality meter (YSI) and recorded pH, temperature, and conductivity approximately once every three to five minutes until sample collection. The following values were used to indicate stability for a minimum of three consecutive readings: ± 0.1 pH, ± 0.5 degrees Celsius (°C) temperature, and ± 3 percent conductivity (microsiemens per centimeter [μ S/cm]). Shannon & Wilson field staff discharged purge water to indoor sinks or to the ground surface depending on the water supply well's location. In most cases, indoor plumbing led to a private septic system.

Following parameter stabilization, field staff collected water samples for the analysis of PFOS, PFOA, PFHxS, PFHpA, PFNA, and PFBS by Method WS LC 0025, the laboratory's inhouse method using laboratory-supplied containers. Copies of the Residential Well Sampling Logs are included in Appendix B.

2.4 Sample Custody, Storage, and Transport

Immediately after collection, the sample bottles for each water supply well were placed in Ziploc bags and stored in a designated sample cooler maintained between 0 °C and 6 °C with ice substitute separated from the sample bottles by a liner bag. Shannon & Wilson maintained custody of the samples until submitting them to the laboratory for analysis. Analytical samples and chain-of-custody (COC) forms were packaged for shipping in a hard-plastic cooler with an adequate quantity of frozen-ice substitute and packing material to prevent bottle breakage. Shannon & Wilson field staff applied custody seals to the cooler, which were observed to be intact upon receipt by the laboratory. Field staff shipped sample coolers to TestAmerica in West Sacramento, California for analysis of PFAS.

2.5 Special Considerations for PFAS Sampling

Shannon & Wilson field staff took appropriate precautions to prevent cross contamination during sampling, including discontinuing the use of personal protective equipment and field supplies known to contain PFASs, using liner bags to contain samples before and after sample collection, hand washing, and donning a fresh pair of disposable nitrile gloves before sample collection.

2.6 Notification of Results

Following validation of the analytical data, Shannon & Wilson prepared analytical-data tables for the project team (DOT&PF, DEC, DHSS, and DRM) and then called property owners and occupants to notify them of the results of the PFAS water testing.

Shannon & Wilson also prepared letters for owners and occupants informing them of the results for the sample collected from their well. These letters were tailored to each property and analytical sample, and included the following information:

- sample name;
- comparison of analytical results to DEC's or EPA's current action levels;
- description of the project; and
- pages of the TestAmerica laboratory report that apply to the owner or occupant's water supply well sample, including other PFAS results.

Where requested, Shannon & Wilson emailed results letters to owners and/or occupants.

A copy of the letter template used to report results to well owners/users is included in Appendix C.

2.7 Water Supply Well Monitoring Criteria

Through coordination with the DOT&PF and DEC, Shannon & Wilson established the following quarterly and annual water supply well monitoring criteria after the March 2019 sampling event. Per DEC direction, these criteria were established to monitor changes in PFAS concentrations over time near affected properties and movement towards potentially affected properties. The March 2019 sampling event included sampling for affected properties to confirm the analytical results for samples collected by DEC.

- Quarterly Criteria
 - Active category 1 and 2 water supply wells with a maximum combined PFOS and PFOA concentration greater than or equal to 35 ppt but less than 70 ppt during a previous sampling event, per DEC guidance; and
 - Active category 1 and 2 water supplies wells within 500 lateral feet of water supply wells with a combined PFOS and PFOA concentration was greater than or equal to 35 ppt during a previous sampling event.
- Annual Criteria
 - Active category 1 and 2 water supplies wells with a maximum combined PFOS and PFOA concentration was greater than or equal to 17.5 ppt but less than 70 ppt during a previous sampling event, per DEC guidance; and
 - Active category 1 and 2 water supplies wells within 500 lateral feet of water supply wells with a combined PFOS and PFOA concentration was greater than or equal to 17.5 ppt during a previous sampling event.

Lateral distance was measured from the GPS points collected during the initial round of sampling. Exhibit 2-3 outlines the seven water supply wells meeting quarterly and/or annual monitoring criteria.

	Location ID	DEC Sample ID	Monitoring Criteria
_	AKNPW-003	KIN-03 / KIN-04	Q/A
_	AKNPW-007	KIN-07	Q/A
_	AKNPW-008	KIN-08	Q/A
	AKNPW-011	KIN-11	Q/A
-	AKNPW-012	-	Q/A
_	AKNPW-208	-	А

Exhibit 2-3: Water Supply Wells Meeting Initial Monitoring Criteria

Notes:

a. Location IDs were assigned by Shannon & Wilson staff during the water supply well search.

A = annual; DEC = Alaska Department of Environmental Conservation; Q = quarterly

The AKNPW-003 exceeded the LHA after the October 2019 quarterly monitoring event. It was sampled during the January 2020 quarterly monitoring event at the request of the business owner but has been removed from the quarterly/annual monitoring schedules for future events. This is the current quarterly and annual monitoring criteria in place for the AKN.

2.8 Quarterly and Annual Monitoring

The first annual/quarterly monitoring event for the AKN occurred in July 2019. Additional quarterly monitoring events for the AKN occurred in October 2019 and January 2020. Shannon & Wilson field staff, Kristen Freiburger or Alena Voigt, collected water supply well samples from each well meeting the annual and quarterly criteria (Exhibit 2-4) and collected additional samples from locations not contacted/sampled during the initial sampling event. These samples were collected using the methods described in Section 2.3. Sample custody, storage, and transport was conducted as outlined in Section 2.4. Shannon & Wilson field staff followed the special considerations for PFAS sampling included in Section 2.5. Copies of the Residential Well Sampling Logs are included in Appendix B. Following validation of the analytical data, Shannon & Wilson made notification of results as described in Section 2.6.

Shannon & Wilson field staff collected water samples in July 2019 for the analysis of PFOS and PFOA reported by Method WS LC 0025, using laboratory-supplied containers. After updated guidance from the DEC, a revised report was requested to include PFHpA, PFNA, PFHxS, and PFBS.

Shannon & Wilson field staff collected water samples in October 2019 and January 2020 for the analysis of 18 PFAS analytes reported by EPA Method 537.1 (PFOS, PFOA, PFHpA,

PFNA, PFHxS, PFBS, PFDA, PFDoA, PFHxA, PFTeA, PFTrDA, PFUnA, HFPO-DA, N-EtFOSAA, N-MeFOSAA, 11CL-PF3OUdS, 9CL-PF3ONS and DONA), using laboratory-supplied containers.

2.9 Alternative Water Sources

The DOT&PF, with assistance from Shannon & Wilson, is exploring various options to provide affected residents with a permanent alternative water source. These may include, but are not limited to, point of entry treatment systems, constructing a community well outside of the affected area, and installing water supply wells in deeper aquifers. Temporary alternative water solutions currently in place for the two affected locations are described below.

2.9.1 AKNPW-204

According to a boring log, the AKNPW-204 well is installed to a depth of 60 feet below ground surface (bgs). Adjacent properties are suspected to have deeper wells, installed to 80-100 feet bgs. The depths of the adjacent wells are only approximate, and well-depth information is based on private property owners' knowledge. The highest concentration for the sum of PFOS and PFOA for AKNPW-204 was 120 ppt collected in March 2019. PFAS at adjacent, presumably deeper wells did not have detections greater than the LHA. Shannon & Wilson suspects the AKNPW-204 well is the shallowest well in the surrounding area and most likely to be impacted by PFAS contamination.

The business at AKNPW-204 used their water supply well for the deli and ice machine. Shannon & Wilson submitted a proposal to DOT&PF on March 27, 2019 to provide temporary alternative water for the business at AKNPW-204. The proposal was approved by DOT&PF on April 4, 2019. Due to the proximity of the AKNPW-011 water supply well to the AKNPW-204 business and the presence of water lines previously used to connect these locations, connecting the business at AKNPW-204 to the AKNPW-011 well was the most feasible interim option to provide alternate water to the store. The sum of five PFAS for AKNPW-011 was less than the DEC action level of 70 ppt. Johnson Drilling Company was subcontracted to purchase the necessary materials and connect the building associated with AKNPW-204 to the AKNPW-011 water supply well. The connection was completed in April 2019.

2.9.2 AKNPW-003

A well log is not available for AKNPW-003 water supply well but is believed to be shallower than adjacent wells. The highest concentration for the sum of PFOS and PFOA for

AKNPW-003 was 87 ppt collected in October 2019. PFAS at adjacent, presumably deeper wells did not have detections greater than the LHA.

The business at AKNPW-003 used their water supply well for drinking, cooking, bathing, etc. The water supply well was also used to fill the non-potable water tanks for fishing vessels during the commercial fishing season. Shannon & Wilson submitted a proposal to DOT&PF on March 27, 2019 to provide temporary alternative water for the business at AKNPW-003. The proposal was approved by DOT&PF on April 4, 2019. The proposed temporary alternative water solution included contracting Johnson Drilling Company to transport potable water from their non-public water supply well to a 1,000-gallon holding tank at the business at AKNPW-003. The water would be transported from Johnson Drilling Company to AKNPW-003 using 1,000-gallon holding tank mounted to a trailer. Initial samples from the water supply well at Johnson Drilling Company for the analysis of nitrate and total coliform, among other analyses per the DEC Drinking Water Program requirements, were collected on May 22, 2019 and submitted to SGS North America, Inc (SGS). The analytical results are discussed in Section 3.

Shannon & Wilson coordinated with DEC Drinking Water Program for the water hauling system and received DEC's approval on June 4, 2020. However, coordination for the installations were halted by the business owner for AKNPW-003 on June 6, 2020. During a follow up discussion with the business owner, Ms. Sammy Cummings of DOT&PF, and Mr. Michael Jaramillo of Shannon & Wilson on June 8, 2020, it was determined that AKNPW-003 prefers to receive bottled drinking/cooking water for their employees and for distribution to the fishing vessels. The water supply well is used to fill the non-potable water tanks for fishing vessels. The owner of AKNPW-003 notifies the fishing vessel captains that the water supply well is for non-potable uses only.

2.10 Public Information

The DOT&PF hosts a webpage (http://dot.alaska.gov/airportwater) describing the PFAS water-testing project. The webpage includes a project summary, list of contacts, simplified regional results map, and links to additional resources. The map is updated after each sampling event following the receipt of analytical data. Appendix C includes results notification letter templates and other information provided during the initial sampling event in March 2019 and subsequent monitoring events in July 2019, October 2019, and January 2020.

2.11 Deviations

In general, Shannon & Wilson conducted the work in accordance with the sampling procedures noted above, and based on ongoing discussion with DRM, DEC and DOT&PF. There were no deviations from the procedures described in Section 2.

3 ANALYTICAL RESULTS

The TestAmerica WOs are included in chronological order in Appendix A. The highest reported water supply well PFAS analytical results to date are shown on Figure 3.

3.1 March 2019 Initial Sampling Results

Shannon & Wilson submitted water supply well samples collected in March 2019 to TestAmerica for determination PFAS concentrations using Method WS LC 0025. This method analyzes for the PFOS, PFOA, PFHpA, PFNA, PFBS, and PFHxS. Table 2 summarizes the PFAS concentrations for the samples collected from the water supply wells during the initial sampling event. One sample location, AKNPW-204, exceeded the LHA of 70 ppt for the sum of PFOS and PFOA.

3.2 July 2019 Annual/Quarterly Monitoring Results

Shannon & Wilson submitted water supply well samples collected in July 2019 to TestAmerica for determination PFOS and PFOA concentrations using Method WS LC 0025, the laboratory's in-house method. Following the October 2019 Technical Memorandum, DEC requested that Shannon & Wilson have the laboratory re-report the PFAS results to include the remaining PFAS available from the method (PFHpA, PFNA, PFHxS, and PFBS). The laboratory provided this information in December 2019. While these additional PFAS results are reported, PFAS concentrations are only compared to the LHA of 70 ppt for the sum of PFOS and PFOA. Table 3 summarizes the PFAS concentrations for the samples collected from the water supply wells during the initial and subsequent monitoring events.

3.3 Quarterly Monitoring Results

The October 2019 and January 2020 quarterly samples were submitted for the analysis of 18 PFAS (PFOS, PFOA, PFHpA, PFNA, PFHxS, PFBS, PFDA, PFDoA, PFHxA, PFTeA, PFTrDA, PFUnA, HFPO-DA, N-EtFOSAA, N-MeFOSAA, 11CL-PF3OUdS, 9CL-PF3ONS and DONA) by EPA Method 537.1. Although all PFAS results for the analytical method are reported, PFAS concentrations are only compared to the LHA of 70 ppt for the sum of PFOS and PFOA. Table 3 summarizes the PFAS concentrations for the samples collected from the water supply wells during the initial and subsequent monitoring events.

3.4 DEC Drinking Water Program Samples

Johnson Drilling Company submitted water supply well samples from the wells at Eddie's Fireplace Inn and Johnson Drilling Company to SGS for water quality analyses, as requested by the DEC Drinking Water Program. The requested analytical methods were:

- anions by EPA 300.0;
- metals by EPA 200.8;
- total coliform by SM21 9223B;
- total dissolved solids (TDS) by SM21 2540C;
- pH by SM21 4500-H B;
- alkalinity by SM21 2320B;
- hardness as calcium carbonate by SM21 2340B;
- conductivity by SM21 2510B; and
- nitrate and nitrite by SM21 4500NO3-F.

The laboratory reports are listed in chronological order in Appendix A, including the SGS laboratory reports for the above-listed samples.

4 QUALITY ASSURANCE AND QUALITY CONTROL

QA/QC procedures assist in producing data of acceptable quality and reliability. Shannon & Wilson reviewed the analytical results provided by TestAmerica and SGS for laboratory QC samples and conducted a QA assessment for this project.

By working in accordance with the proposed scope of services, Shannon & Wilson consider the samples collected for this project to be representative of site conditions at the locations and times they were obtained. The quality of the analytical data for this project does not appear to have been compromised, and those results affected by QC anomalies were qualified with appropriate flags. Additional details regarding Shannon & Wilson's QA assessment are presented in Appendix D.

5 PLANNED AND FUTURE WORK

Shannon & Wilson will continue the well search to target properties not yet contacted/sampled in the search areas. This work will be completed through Shannon & Wilson's statewide contract with DOT&PF during subsequent water supply well monitoring activities. Shannon & Wilson will continue the quarterly and annual monitoring based on the schedule agreed upon with DOT&PF. A separate site characterization project will be conducted in 2020 upon DEC approval of the proposed site characterization work plan addendum. Shannon & Wilson will also continue investigating permanent solutions for drinking water for AKNPW-003 and AKNPW-204.

Quarterly water supply well sampling for 2020 was scheduled to take place in April 2020; however, the sampling event was postponed due to the world-wide concern regarding COVID-19. Shannon & Wilson collected the quarterly water supply well samples in July 2020. Decisions regarding future monitoring criteria and frequency will be discussed with DOT&PF and DEC prior to conducting sampling events.

6 DISCUSSION OF RESULTS AND RECOMMENDATIONS

Shannon & Wilson presents here a discussion of the PFAS concentrations reported for the water supply well samples collected at and near the AKN property for the current reporting period.

6.1 Comparison to Action Levels

The two category 1 wells AKNPW-003 and AKNPW-204 had detections for the sum of PFOS and PFOA greater than the LHA for the current reporting period. The exceedances are along the Alaska Peninsula Highway and along King Salmon-Naknek Road, respectively (Figure 2). Locations that exceed the LHA are depicted with red squares in Figure 3. PFOA and PFHxS are most frequently the highest detected PFAS in the water supply wells sampled to date. The wells with the highest PFOA concentrations are suspected to be screened in shallow portions of the A-Aquifer.

6.2 Trend Analysis

Shannon & Wilson assessed temporal data for locations included in the well-monitoring network using a Mann-Kendall nonparametric trend analysis and Monitoring and Remediation Optimization System (MAROS) classification (Gilbert, 1987; Aziz, et. al., 2016). The MAROS evaluation was developed by the Air Force Center for Engineering and the Environment to assess concentration trends with confidence levels below 95 percent. MAROS further discriminates between "no trend" and "stable" contaminant concentrations by evaluating the Mann-Kendall trend statistic, confidence in trend, and coefficient of variation. These tests require data from a minimum of four sampling events to assess concentration trends, although eight or more data for a given location are preferred for statistical analyses.

Shannon & Wilson conducted the trend analysis for PFOS, PFOA, and PFOS+PFOA combined results using the EPA's Statistical Software ProUCL, version 5.1. However, the PFOS results were not detected for the locations evaluated and a meaningful assessment could not be conducted. Also, the Sum of PFOS and PFOA will reflect the PFOA results since PFOS was not detected for the locations evaluated. Table 5 presents the PFOS, PFOA, and LHA results for each monitoring location sampled at least four times (AKNPW-007, AKNPW-008, AKNPW-011, and AKNPW-12).

The results for AKNPW-007 and AKNPW-012 displayed stable trends for PFOA and LHA combined. Results for AKNPW-008 displayed a decreasing trend for PFOA and LHA combined. No trends were observed for AKNPW-011.

6.3 Recommendations

Based on previous work, Shannon & Wilson recommends the DOT&PF continue to:

- attempt to identify wells at properties where well status is unknown during subsequent water supply well monitoring activities;
- sample wells in the quarterly well monitoring network to obtain four more data points and provide more reliable trend analyses;
- work with the DEC and the DHSS to continue educating the public regarding the potential health effects of exposure to PFAS-containing water, as new information becomes available; and
- develop procedures to limit discharges of PFAS-containing AFFF to the ground, surface water bodies or groundwater from ARFF training or equipment testing where possible. This recommendation is not intended to limit or restrict AFFF use in any way during an emergency response.

Our recommendations are based on:

- Groundwater conditions inferred through water supply well samples collected from March 2019 to date.
- Soil conditions observed on, near, and downgradient of the AKN.

- The results of analytical testing performed on soil and water samples collected for the USAF PFAS Investigations and this DOT&PF Water Supply Well Investigation from water supply wells, monitoring wells, temporary well points and surface water on, near, and downgradient from the AKN.
- Publicly available literature and data Shannon & Wilson reviewed for this project, including USAF reports.
- Our understanding of the project and information provided by the DOT&PF, DRM, and other members of the project team.
- The limitations of Shannon & Wilson's approved scope described in the proposed Scope of Services dated August 23, 2019.

The information included in this report is based on limited sampling and should be considered representative of the times and locations at which the sampling occurred. Regulatory agencies may reach different conclusions than Shannon & Wilson. Shannon & Wilson has prepared and included in the *Important Information about your Environmental Report* Appendix to assist you and others in understanding the use and limitations of this report.

7 REFERENCES

- Alaska Department of Environmental Conservation (DEC), 2017, Site characterization work plan and reporting guidance for investigation of contaminated sites: Juneau, Alaska, ADEC Division of Spill Prevention and Response, Contaminated Sites Program, March, available: http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm.
- Alaska Department of Environmental Conservation (DEC), 2019a, 18 AAC 75, Oil and other hazardous substances pollution control: Juneau, Alaska, Alaska Administrative Code (AAC), Title 18, Chapter 75, January available: <u>http://dec.alaska.gov/commish/regulations/</u>.
- Alaska Department of Environmental Conservation (DEC), 2019b, 18 AAC 75.341, Soil cleanup levels: Juneau, Alaska, Alaska Administrative Code (AAC), Title 18, Chapter 75, Section 341, January, available: <u>http://dec.alaska.gov/commish/regulations/</u>.
- Alaska Department of Environmental Conservation (DEC), 2019c, 18 AAC 80, Drinking water: Juneau, Alaska, Alaska Administrative Code (AAC), Title 18, Chapter 80, May, available: <u>http://dec.alaska.gov/eh/dw/regulations</u>.

Alaska Department of Environmental Conservation (DEC), 2019d, Field sampling guidance for contaminated sites and leaking underground storage tanks: Juneau, Alaska, DEC Division of Spill Prevention and Response, Contaminated Sites Program, October, available: <u>http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm</u>.

Alaska Department of Environmental Conservation (DEC), 2019e, Technical memorandum action levels for PFAS in water and guidance on sampling groundwater and drinking water (updated): Juneau, Alaska, Alaska Department of Environmental Conservation Division of Spill Prevention and Response Contaminated Sites Program and Division of Environmental Health Drinking Water Program, 4 p., October 2.

- Aziz, J.J.; Vanderford, Mindy; Newell, C.J.; and others, 2006, Monitoring and remediation optimization system (MAROS) software, version 2.2, user guide: GSI
 Environmental, job no. 2236, prepared for Air Force Center for Environmental Excellence, March.
- CH2M, July 2019, Final Uniform Federal Policy Quality Assurance Project Plan for Sites Inspections of Aqueous Film Forming Foam Areas, King Salmon Divert, Alaska.
- Feulner, Alvin J, 1963, Data on the wells in the King Salmon area, Alaska: Alaska Dept. of Health and Welfare Water-Hydrology. Data 24, 18p., illus., tables.
- U.S. Environmental Protection Agency (EPA), 2016, Drinking water health advisory for perfluorooctanoic acid (PFOA): Washington, D.C., U.S. EPA Office of Water, Health and Ecological Criteria Division, EPA 822-R-16-005, May, available: <u>https://www.epa.gov/sites/production/files/2016-</u> 05/documents/pfoa health advisory final 508.pdf
- U.S. Environmental Protection Agency (EPA), 2016, ProUCL, v. 5.1, statistical software: Washington, D.C., U.S. EPA, available: <u>https://www.epa.gov/land-research/proucl-software</u>.

Table 1 - December 2018 DEC Analytical Results

Sample	Sample	Perfluorohexanoic acid (PFHxA)	Perfluorobutanesulfonic acid (PFBS)	Perfluorodecanoic acid (PFDA)	Perfluoroundecanoic acid (PFUnA)	Perfluorododecanoic acid (PFDoA)	Perfluorotridecanoic acid (PFTrDA)	Perfluorotetradecanoic acid (PFTeA)	N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	Perfluorohexanesulfonic acid (PFHxS)	Perfluoroheptanoic acid (PFHpA)	Perfluorononanoic acid (PFNA)	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	LHA Combined (PFOS + PFOA)	Sum of 5
Location	Date	ppt	ppt	ppt	ppt	ppt	ppt	ppt	ppt	ppt	ppt	ppt	ppt	ppt	ppt	ppt	ppt
KIN-01	12/18/2018	7.5	3.4	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	1.2 J	0.87 J	<1.7	<1.7	2.4	2.4 ‡	4.47 J‡
KIN-03	12/18/2018	110	56	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	75	17	<1.7	1.2 J	62	63 J	155 J‡
KIN-04	12/18/2018	99	51	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	72	17	<1.7	1.4 J	62	63 J	152 J‡
KIN-05	12/18/2018	2.1	0.96 J	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	1.8	0.77 J	<1.7	<1.7	2.0	2.0 ‡	4.57 J‡
KIN-06	12/18/2018	1.6 J	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	2.0	2.0 ‡	2.00 ‡
KIN-07	12/18/2018	3.1	0.55 J	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	2.1	3.3	<1.7	<1.7	2.9	2.9 ‡	8.30 ‡
KIN-08	12/18/2018	5.3	1.5 J	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	2.4	1.1 J	<1.8	<1.8	5.0	5.0 ‡	8.50 J‡
KIN-09	12/18/2018	4.6	0.73 J	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	2.0	0.99 J	<1.8	<1.8	5.7	5.7 ‡	8.69 J‡
KIN-10	12/18/2018	0.50 J	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	0.55 J	0.55 J‡	0.550 J‡
KIN-11	12/19/2018	4.9	0.76 J	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	2.3	0.87 J	<1.8	<1.8	6.0	6.0 ‡	9.17 J‡

NOTES: Samples from December 2018 were collected by DEC Contaminated Sites Program.

Sample KIN-04 is a field duplicate of sample KIN-03.

The reported units, ppt, are equivalent to nanograms per liter.

At the time of the sampling event, the DEC action limit was the sum of EPA LHA level is 70 ppt for PFOS and PFOA

EPA LHA level is 70 ppt for PFOS and PFOA is included for reference.

BOLD Detected concentration exceeds the regulatory limit.

‡ Minimum concentration, the LHA or Sum of 5 combined concentration includes one or more result that is not detected greater than the MDL.

< Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory. EPA = Environmental Protection Agency; LHA = Lifetime Health Advisory; ppt = parts per trillion

March 2019 to January 2020 Water Supply Well Monitoring FINAL Summary Report

Table 2 - March 2019 Initial Water Supply Well Analytical Results

Sample	Sample	Perfluorohexanesulfonic acid (PFHxS)	Perfluoroheptanoic acid (PFHpA)	Perfluorononanoic acid (PFNA)	Perfluorobutanesulfonic acid (PFBS)	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	LHA Combined (PFOS + PFOA)
Location	Date	ppt	ppt	ppt	ppt	ppt	ppt	ppt
AKNPW-001	03/15/2019	2.5	1.5 J	<2.0	3.5	2.3	2.6	4.9
AKNPW-003	03/15/2019	58	13	<2.0	45	<2.0	53	53 ‡
AKNPW-005	03/15/2019	1.9 J	0.95 J	<2.0	1.1 J	<2.0	1.5 J	1.5 J‡
AKNPW-006	03/18/2019	<2.0	<2.0	<2.0	<2.0	<2.0	1.7 J	1.7 J‡
AKNPW-007	03/15/2019	2.3 I	3.4	<2.0	<2.0	<2.0	2.4	2.4 ‡
AKNPW-008	03/15/2019	2.1	1.1 J	<2.0	2.4 I	<2.0	3.4	3.4 ‡
AKNPW-009	03/15/2019	1.9 J	1.4 J I	<2.0	1.8 J I	<2.0	4.8	4.8 ‡
AKNPW-010	03/15/2019	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	N/A
AKNPW-011	03/15/2019	2.3	1.1 J	<2.0	<2.0	<2.0	4.9	4.9 ‡
AKNPW-012	03/14/2019	6.4	2.3	<2.0	1.8 J	<2.0	12	12 ‡
AKNPW-013	03/15/2019	8.2	5.2	<2.0	2.8	<2.0	4.1	4.1 ‡
AKNPW-014	03/15/2019	<2.0	3.0	<2.0	<2.0	<2.0	1.4 J	1.4 J‡
AKNPW-015	03/15/2019	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	N/A
AKNPW-016	03/16/2019	4.11	1.4 J I	<2.0	1.6 J I	<2.0	6.5	6.5‡
AKNPW-017	03/16/2019	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	N/A
AKNPW-020	03/18/2019	1.6 J I	<2.0	<2.0	3.6	<2.0	<2.0	N/A
AKNPW-204	03/15/2019	120	21	<2.0	31	10	110	120
AKNPW-208	03/18/2019	9.9	3.2	<2.0	4.4	<2.0	21	21‡
AKNPW-422	03/15/2019	1.6 J	<2.0	<2.0	1.0 J	<2.0	3.0	3.0 ‡
AKNPW-424	03/15/2019	42	7.2	1.7 J	39	<2.0	10	10 ‡

Highest reported result is reported for field-duplicate samples.

The reported units, ppt, are equivalent to nanograms per liter.

EPA LHA level is 70 ppt for PFOS and PFOA

‡ Minimum concentration, the LHA combined concentration includes one or more result that is not detected greater than the MDL.

< Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

I The reported value represents the estimated maximum possible concentration. Flag applied by the laboratory.

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

BOLD Detected concentration exceeds the regulatory limit.

N/A Not applicable. The sum of PFOS and PFOA concentration could not be calculated because one or more PFAS was not detected in the project sample. EPA = Environmental Protection Agency; LHA = Lifetime Health Advisory; ppt = parts per trillion

NOTES:

Table 3 - Historical Summary of Water Supply Well Analytical Results

Sample Location	Sample Date	Perfluorohexanesulfonic acid (PFHxS)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorononanoic acid (PFNA)	Perfluorobutanesulfonic acid (PFBS)	Perfluorodecanoic acid (PFDA)	Perfluoroundecanoic acid (PFUnA)	Perfluorododecanoic acid (PFDoA)	Perfluorotridecanoic acid (PFTrDA)	Perfluorotetradecanoic acid (PFTeA)	N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	N-Ethyl perfluorooctane suffonamidoacetic acid (N-EtFOSAA)	9-Chlorohexadecafluoro-3-oxanonane- 1-sulfonic acid (9CI-PF3ONS)	11-Chloroeicosafluoro-3-oxaundecane 1-sulfonic acid (11CI-PF3OUdS)	4,8-Dioxa-3H-perfluorononanoic acid (DONA)	
AKNPW-001	03/15/2019	2.5		1.5 J	<2.0	3.5											
	03/15/2019	58		13	<2.0	45											
AKNPW-003	10/29/2019	100	130	19	<1.7	58	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	
	01/16/2020	56	77	11	<1.7	34	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	
AKNPW-005	03/15/2019	1.9 J		0.95 J	<2.0	1.1 J											
/	07/25/2019	1.9 J		<2.0	<2.0	1.1 J											
AKNPW-006	03/18/2019	<2.0		<2.0	<2.0	<2.0											
	03/15/2019	2.3 I		3.4	<2.0	<2.0											
AKNPW-007	07/25/2019	2.4		3.1	<2.0	<2.0											
	10/29/2019	2.4	3.2	3.3	<1.6	0.86 J	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	
	01/16/2020	2.2	2.5	2.8	<1.7	0.79 J	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	
	03/15/2019	2.1		1.1 J	<2.0	2.4 I											
	07/26/2019	1.5 J		<2.0	<2.0	1.6 J											
	10/29/2019	1.4 J	3.5	0.64 J	<1.8	1.3 J	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	0.83 J	<1.8	<1.8	
	01/16/2020	1.5 J	2.8	0.63 J	<1.7	0.88 J	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	
AKNPW-009	03/15/2019	1.9 J		1.4 J I	<2.0	1.8 J I											
AKNPW-010	03/15/2019	<2.0		<2.0	<2.0	<2.0											
	03/15/2019	2.3		1.1 J	<2.0	<2.0											
	07/24/2019	2.1		<2.0	<2.0	<2.0											
	10/29/2019	1.7	3.6	0.70 J	<1.7	0.54 J	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	
	01/16/2020	2.3	4.2	0.88 J	<1.7	0.72 J	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	
	03/14/2019	6.4		2.3	<2.0	1.8 J											
	07/24/2019	6.7		2.6	<2.0	2.5											
	10/29/2019	8.0	11	2.6	<1.6	2.0	<1.6	<1.6	<1.6	<1.6	<1.6	0.55 J	<1.6	<1.6	<1.6	<1.6	
	01/16/2020	6.1	8.8	2.0	<1.8	1.6 J	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	
AKNPW-013	03/15/2019	8.2		5.2	<2.0	2.8											
AKNPW-014	03/15/2019	<2.0		3.0	<2.0	<2.0											
AKNPW-015	03/15/2019	<2.0		<2.0	<2.0	<2.0											
AKNPW-016	03/16/2019	4.1 I		1.4 J I	<2.0	1.6 J I											
AKNPW-017	03/16/2019	<2.0		<2.0	<2.0	<2.0											
AKNPW-018	07/24/2019	<2.0		<2.0	<2.0	<2.0											

March 2019 to January 2020 Water Supply Well Monitoring FINAL Summary Report

Hexafluoropropylene oxide dimer acid (HFPO-DA)	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	LHA Combined (PFOS + PFOA)
	2.3	2.6	4.9
	<2.0	53	53 ‡
0.46 J	2.0	85	87
<1.7	0.98 J	47	48 J
	<2.0	1.5 J	1.5 J‡
	<2.0	1.8 J	1.8 J‡
	<2.0	1.7 J	1.7 J‡
	<2.0	2.4	2.4 ‡
	<2.0	2.2	2.2 ‡
<1.6	<1.6	2.5	2.5 ‡
<1.7	<1.7	2.3	2.3 ‡
	<2.0	3.4	3.4 ‡
	<2.0	2.8	2.8 ‡
<1.8	<1.8	2.6	2.6 ‡
<1.7	<1.7	2.5	2.5 ‡
	<2.0	4.8	4.8 ‡
	<2.0	<2.0	N/A
	<2.0	4.9	4.9 ‡
	<2.0	4.2	4.2 ‡
<1.7	<1.7	4.2	4.2 ‡
<1.7	<1.7	5.1	5.1‡
	<2.0	12	12 ‡
	<2.0	13	13 ‡
<1.6	<1.6	16	16‡
<1.8	<1.8	11	11 ‡
	<2.0	4.1	4.1‡
	<2.0	1.4 J	1.4 J‡
	<2.0	<2.0	N/A
	<2.0	6.5	6.5‡
	<2.0	<2.0	N/A
	<2.0	<2.0	N/A

Sample Location	Sample Date	Perfluorohexanesulfonic acid (PFHxS)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorononanoic acid (PFNA)	Perfluorobutanesulfonic acid (PFBS)	Perfluorodecanoic acid (PFDA)	Perfluoroundecanoic acid (PFUnA)	Perfluorododecanoic acid (PFDoA)	Perfluorotridecanoic acid (PFTrDA)	Perfluorotetradecanoic acid (PFTeA)	N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	9-Chlorohexadecafluoro-3-oxanonane- 1-sulfonic acid (9CI-PF3ONS)』	11-Chloroeicosafluoro-3-oxaundecane- 1-sulfonic acid (11CI-PF3OUdS)	4,8-Dioxa-3H-perfluorononanoic acid (DONA)	Hexafluoropropylene oxide dimer acid (HFPO-DA)	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	LHA Combined (PFOS + PFOA)
AKNPW-020	03/18/2019	1.6 J I		<2.0	<2.0	3.6												<2.0	<2.0	N/A
AKNPW-204	03/15/2019	120		21	<2.0	31												10	110	120
4KNDW/_208	03/18/2019	9.9		3.2	<2.0	4.4												<2.0	21	21 ‡
ANNI W-200	07/25/2019	9.7		3.9	0.93 J	4.3												2.7	23	26
	03/15/2019	1.6 J		<2.0	<2.0	1.0 J												<2.0	3.0	3.0 ‡
ANNI [®] W-422	07/25/2019	1.7 J		<2.0	<2.0	1.1 J												<2.0	3.1	3.1 ‡
	03/15/2019	42		7.2	1.7 J	39												<2.0	10	10 ‡
	07/25/2019	6.4		1.2 J	<2.0	8.0												<2.0	2.4	2.4 ‡

NOTES: Highest reported result is reported for field-duplicate samples.

The reported units, ppt, are equivalent to nanograms per liter.

† EPA LHA level is 70 ppt for PFOS and PFOA

‡ Minimum concentration, the LHA combined concentration includes one or more result that is not detected greater than the MDL.

< Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

I The reported value represents the estimated maximum possible concentration. Flag applied by the laboratory.

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

N/A Not applicable. The sum of PFOS and PFOA concentration could not be calculated because one or more PFAS was not detected in the project sample.

--- Analyte not reported for this event.

BOLD Detected concentration exceeds the regulatory limit.

EPA = Environmental Protection Agency; LHA = Lifetime Health Advisory; ppt = parts per trillion

March 2019 to January 2020 Water Supply Well Monitoring FINAL Summary Report

Table 4 - May 2019 DEC Drinking Water Program Analytical Results

	Analyte	Units	Eddie's Fireplace Inn	Johnson Drilling	
	Aluminum	mg/L	<0.01	<0.01	
	Antimony	mg/L	<0.0005	<0.0005	
	Arsenic	mg/L	<0.0025	<0.0025	
	Barium	mg/L	0.00363	<0.0015	
	Cadmium	mg/L	<0.00025	<0.00025	
	Calcium	mg/L	6.05	9.99	
	Chromium	mg/L	<0.001	<0.001	
	Copper	mg/L	0.00122	0.00217	
	Iron	mg/L	<0.125	0.428	
EPA 200.8	Lead	mg/L	<0.0001	0.000243	
	Magnesium	mg/L	5.4	5.23	
	Manganese	mg/L	0.185	0.329	
	Nickel	mg/L	<0.001	<0.001	
	Potassium	mg/L	5.01	2.57	
	Selenium	mg/L	<0.0025	<0.0025	
	Silver	mg/L	<0.0005	<0.0005	
	Sodium	mg/L	59.8	5.24	
	Thallium	mg/L	<0.0005	<0.0005	
	Zinc	mg/L	<0.005	<0.005	
	Chloride	mg/L	21.9	3.59	
EPA 300.0	Fluoride	mg/L	<0.1	<0.1	
	Sulfate	mg/L	6.13	5.18	
SM21 4500-H B	рН		8.3	7.8	
SM21 4500NO3-F	Nitrate+Nitrite	mg/L	<0.1	<0.1	
SM21 2540C	Total Dissolved Solids	mg/L	234	106	
SM21 2340B	Hardness as CaCO3	mg/L	37.4	46.5	
SM21 2510B	Conductivity	umhos/cm	345	121	
	Alkalinity	mg/L	136	50.5	
SM21 2320B	CO3 Alkalinity	mg/L	<5.00	<5.00	
	HCO3 Alkalinity	mg/L	133	50.5	
	OH Alkalinity	mg/L	<5.00	<5.00	
SM23 4500S D	E. Coli		Negative	Negative	
	Total Coliform		Negative	Negative	

Notes:

EPA Environmental

mg/L milligram per liter

µg/L microgram per liter

umhos/cm micromhos per centimeter

< Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control failures.

Table 5 - King Salmon Water Supply Well Trend Analysis

Sample Name	Sample Date	Sample Location	PFOS (ppt)	PFOA (ppt)	LHA Combined (PFOS + PFOA)	Exceed LHA Level?ª	Trends ^b
-	Mar-2019		<2.0	2.4	2.4 ‡		Cannot assess a
	Jul-2019		<2.0	2.2	2.2 ‡	No	trend for PFOS;
	Oct-2019	- ANNE W-007 -	<1.6	2.5	2.5 ‡	NO	Stable trend for
	Jan-2020	-	<1.7	2.3	2.3 ‡		PFOA and LHA
AKNPW-008 -	Mar-2019		<2.0	3.4	3.4 ‡		Cannot assess a
	Jul-2019		<2.0	2.8	2.8 ‡	No	trend for PFOS;
	Oct-2019	- ANNE W-000 -	<1.8	2.6	2.6 ‡	INU	Decreasing trend
	Jan-2020	-	<1.7	2.5	2.5 ‡		for PFOA and LHA
	Mar-2019		<2.0	4.9	4.9 ‡		Cannot assess a
	Jul-2019		<2.0	4.2	4.2 ‡	No	trend for PFOS;
	Oct-2019		<1.7	4.2	4.2 ‡	NO	No trend for PFOA
	Jan-2020		<1.7	5.1	5.1 ‡		and LHA
	Mar-2019		<2.0	12	12 ‡		Cannot assess a
	Jul-2019		<2.0	13	13 ‡	No	trend for PFOS;
	Oct-2019		<1.6	16	16‡	INU	Stable trend for
-	Jan-2020		<1.8	11	11 ‡		PFOA and LHA

NOTES:

The higher detected result is reported for field-duplicate samples.

Trends were only evaluated for locations with more than four results and at least one detected result.

a EPA LHA level is 70 ng/L for PFOS and PFOA combined.

b Mann-Kendall trend analysis at a 95% confidence level was calculated using the EPA statistics software ProUCL Version 5.1 and further evaluated using the MAROS decision matrix.

< Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control failures.

‡ Minimum concentration, the LHA combined concentration includes one or more result that is not detected greater than the MDL.

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

MAROS Monitoring and Remediation Optimization System

ppt parts per trillion; equivalent to nanograms per liter

* Sum of PFOS, PFOA, PFHxS, PFHpA, and PFNA

Appendix A Analytical Reports and Associated LDRCs

CONTENTS

- Analytical Laboratory Reports
- DEC Laboratory Data Review Checklists

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-82900-1 Client Project/Site: PFAS, AK Drinking Water December

For:

Alaska Department of Env. Conservation Post Office Box 1542 Haines, Alaska 99827

Attn: Anne Marie Palmieri

M. Elaine Walker

Authorized for release by: 1/16/2019 2:49:13 PM

Elaine Walker, Project Manager II (253)248-4972 elaine.walker@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Certification Summary	5
Sample Summary	6
Subcontract Data	7
Chain of Custody	38

Job ID: 580-82900-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-82900-1

Receipt

Twenty-one samples were received on 12/26/2018 11:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.0° C.

The samples were forwarded to Eurofins Lancaster Lab for Method 537 DW PSAS analysis. Their report is included here.

Definitions/Glossary

Client: Alaska Department of Env. Conservation Project/Site: PFAS, AK Drinking Water December

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Accreditation/Certification Summary

Client: Alaska Department of Env. Conservation Project/Site: PFAS, AK Drinking Water December TestAmerica Job ID: 580-82900-1

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	01-19-19
ANAB	DoD ELAP		L2236	01-19-22
ANAB	ISO/IEC 17025		L2236	01-19-19
California	State Program	9	2901	11-05-19
Montana (UST)	State Program	8	N/A	04-30-20
Nevada	State Program	9	WA000502019-1	07-31-19
Oregon	NELAP	10	WA100007	11-05-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-19

Sample Summary

Matrix

Water

Client: Alaska Department of Env. Conservation Project/Site: PFAS, AK Drinking Water December

DIL-01

DIL-02

DIL-03

DIL-04

DIL-05

DIL-06

DIL-07

DIL-08

DIL-09

DIL-10

KIN-01

KIN-03

KIN-04

KIN-05

KIN-06

KIN-07

KIN-08

KIN-09

KIN-10

KIN-11

KIN-02 (field blank)

Client Sample ID

Lab Sample ID

580-82900-1

580-82900-2

580-82900-3

580-82900-4

580-82900-5

580-82900-6

580-82900-7

580-82900-8

580-82900-9

580-82900-10

580-82900-11

580-82900-12

580-82900-13

580-82900-14

580-82900-15

580-82900-16

580-82900-17

580-82900-18

580-82900-19

580-82900-20

580-82900-21

TestAmerica Job ID: 580-82900-1

12/17/18 09:40 12/26/18 11:00

12/17/18 10:40 12/26/18 11:00 12/17/18 11:10 12/26/18 11:00

12/17/18 11:20 12/26/18 11:00

12/17/18 11:50 12/26/18 11:00

12/17/18 11:50 12/26/18 11:00

12/17/18 13:30 12/26/18 11:00 12/17/18 14:00 12/26/18 11:00

12/17/18 14:20 12/26/18 11:00 12/17/18 15:15 12/26/18 11:00

12/18/18 14:50 12/26/18 11:00

12/18/18 14:50 12/26/18 11:00

12/18/18 15:10 12/26/18 11:00

12/18/18 15:10 12/26/18 11:00

12/18/18 15:50 12/26/18 11:00

12/18/18 16:10 12/26/18 11:00

12/18/18 16:40 12/26/18 11:00

12/18/18 16:45 12/26/18 11:00

12/18/18 17:00 12/26/18 11:00

12/18/18 17:30 12/26/18 11:00

12/19/18 10:15 12/26/18 11:00

Collected

5
6

Received

5
J
6

TestA	merica	Seattle

Page	6	of	39
------	---	----	----

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

TestAmerica 880 Riverside Parkway West Sacramento CA 95605

Report Date: January 14, 2019 11:17

Project: Alaska DEC

Account #: 01042 Group Number: 2021414 SDG: TAK30 State of Sample Origin: AK

Electronic Copy To TestAmerica

Attn: Elaine Walker

Respectfully Submitted,

Kay Klow

Kay Hower

(717) 556-7364

To view our laboratory's current scopes of accreditation please go to <u>https://www.eurofinsus.com/environment-</u> testing/laboratories/eurofins-lancaster-laboratories-environmental/certifications-and-accreditations-eurofins-lancaster-laboratoriesenvironmental/. Historical copies may be requested through your project manager.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

SAMPLE INFORMATION

C			1
0TINS Lancaste	r Laboratories		2
Environm	nental	Sent.	
Lancaster, PA 17601 • 717-656-2300 • Fax: 7	717-656-6766 • www.EurofinsUS.com/LancLabsEnv		<u> </u>
	SAMPLE IN	FORMATION	5
			6
Client Sample Des	<u>cription</u>	Sample Collection	<u>ELLE#</u>
DIL 01 Crah Water	-	<u>Date/Time</u> 12/17/2018 00:40	0052226 7
DIL-01 Grab Water	r	12/17/2018 10:40	9953220
DIL-02 Grab Water	r	12/17/2018 11:10	9953228 8
DIL-04 Grab Water	ſ	12/17/2018 11:20	9953229
DIL-05 Grab Water	r	12/17/2018 11:50	9953230
DIL-06 Grab Water	r	12/17/2018 11:50	9953231
DIL-07 Grab Water	r	12/17/2018 13:30	9953232
DIL-08 Grab Water	ſ	12/17/2018 14:00	9953233
DIL-09 Grab Water	r	12/17/2018 14:20	9953234
DIL-10 Grab Water	r	12/17/2018 15:15	9953235
KIN-01 Grab Water	r	12/18/2018 14:50	9953236
KIN-02 (field blank)) Grab Water	12/18/2018 14:50	9953237
KIN-03 Grab Water	r	12/18/2018 15:10	9953238
KIN-04 Grab Water	r	12/18/2018 15:10	9953239
KIN-05 Grab Water	r	12/18/2018 15:50	9953240
KIN-06 Grab Water	r	12/18/2018 16:10	9953241
KIN-07 Grab Water	r	12/18/2018 16:40	9953242
KIN-08 Grab Water	r	12/18/2018 16:45	9953243
KIN-09 Grab Water	r	12/18/2018 17:00	9953244
KIN-10 Grab Water	r	12/18/2018 17:30	9953245
KIN-11 Grab Water	r	12/19/2018 10:15	9953246

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

WW 9953226 2021414

Sample Description:	DIL-01 Grab Water Alaska DEC	TestAmerica ELLE Sample #: FLLE Group #:
Project Name:	Alaska DEC	Matrix: Water
Submittal Date/Time: Collection Date/Time: SDG#:	12/21/2018 11:20 12/17/2018 09:40 TAK30-01	

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 Ver	sion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.48	1.9	1
	NEtFOSAA is the acronym for N-ethyl perflu	orooctanesulfonami	doacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.48	1.9	1
	NMeFOSAA is the acronym for N-methyl pe	rfluorooctanesulfona	amidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	0.51 J	0.48	1.9	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.48	1.9	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.48	1.9	1
14070	Perfluoroheptanoic acid	375-85-9	3.9	0.48	1.9	1
14070	Perfluorohexanesulfonate	355-46-4	2.2	0.48	1.9	1
14070	Perfluorohexanoic acid	307-24-4	8.2	0.48	1.9	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.48	1.9	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.48	1.9	1
14070	Perfluorooctanoic acid	335-67-1	3.8	0.48	1.9	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.48	1.9	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.48	1.9	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.48	1.9	1

State of Alaska Lab Certification No. UST-061

Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 19:22 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:DIL-02 Grab Water
Alaska DECProject Name:Alaska DECSubmittal Date/Time:12/21/2018 11:20
12/17/2018 10:40
TAK30-02

TestAmerica ELLE Sample #: WW 99 ELLE Group #: 20214 Matrix: Water

WW 9953227 2021414

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 Ver	sion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.44	1.7	1
	NEtFOSAA is the acronym for N-ethyl perflue	orooctanesulfonami	doacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.44	1.7	1
	NMeFOSAA is the acronym for N-methyl per	fluorooctanesulfona	midoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	4.4	0.44	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.44	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	3.6	0.44	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	12	0.44	1.7	1
14070	Perfluorohexanoic acid	307-24-4	17	0.44	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.44	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	3.4	0.44	1.7	1
14070	Perfluorooctanoic acid	335-67-1	2.5	0.44	1.7	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1.7	1

State of Alaska Lab Certification No. UST-061

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 19:34 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1	

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

Sample Description:	DIL-03 Grab Water Alaska DEC	TestAmerica ELLE Sample #: ELLE Group #:	WW 9953228 2021414
Project Name:	Alaska DEC	Matrix: Water	
Submittal Date/Time: Collection Date/Time: SDG#:	12/21/2018 11:20 12/17/2018 11:10 TAK30-03		

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 V	ersion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.45	1.8	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfona	midoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.45	1.8	1
	NMeFOSAA is the acronym for N-methyl	perfluorooctanesulfo	namidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	3.0	0.45	1.8	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1.8	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1.8	1
14070	Perfluoroheptanoic acid	375-85-9	3.6	0.45	1.8	1
14070	Perfluorohexanesulfonate	355-46-4	10	0.45	1.8	1
14070	Perfluorohexanoic acid	307-24-4	12	0.45	1.8	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.45	1.8	1
14070	Perfluoro-octanesulfonate	1763-23-1	3.5	0.45	1.8	1
14070	Perfluorooctanoic acid	335-67-1	2.3	0.45	1.8	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1.8	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1.8	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1.8	1

State of Alaska Lab Certification No. UST-061

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/08/2019 16:39 12/29/2018 06:00	Joshua P Trost Robert Brown	1 1	

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:DIL-04 Grab Water
Alaska DECProject Name:Alaska DECSubmittal Date/Time:12/21/2018 11:20
12/17/2018 11:20
TAK30-04

TestAmerica ELLE Sample #: WW ELLE Group #: 2021 Matrix: Water

WW 9953229 2021414

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 Ver	sion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.42	1.7	1
	NEtFOSAA is the acronym for N-ethyl perflu	orooctanesulfonami	doacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.42	1.7	1
	NMeFOSAA is the acronym for N-methyl per	rfluorooctanesulfona	amidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	0.70 J	0.42	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.42	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.42	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	N.D.	0.42	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	0.62 J	0.42	1.7	1
14070	Perfluorohexanoic acid	307-24-4	5.0	0.42	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.42	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.42	1.7	1
14070	Perfluorooctanoic acid	335-67-1	0.49 J	0.42	1.7	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.42	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.42	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.42	1.7	1

State of Alaska Lab Certification No. UST-061

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 19:57 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1	

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:	DIL-05 Grab Water Alaska DEC
Project Name:	Alaska DEC
Submittal Date/Time: Collection Date/Time: SDG#:	12/21/2018 11:20 12/17/2018 11:50 TAK30-05

Analysis Report

WW 9953230

2021414

TestAmerica ELLE Sample #:

ELLE Group #:

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 Ver	sion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.44	1.8	1
	NEtFOSAA is the acronym for N-ethyl perflu	orooctanesulfonam	idoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.44	1.8	1
	NMeFOSAA is the acronym for N-methyl pe	rfluorooctanesulfona	amidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	51	0.44	1.8	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.44	1.8	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1.8	1
14070	Perfluoroheptanoic acid	375-85-9	3.3	0.44	1.8	1
14070	Perfluorohexanesulfonate	355-46-4	140	4.4	18	10
14070	Perfluorohexanoic acid	307-24-4	39	0.44	1.8	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.44	1.8	1
14070	Perfluoro-octanesulfonate	1763-23-1	37	0.44	1.8	1
14070	Perfluorooctanoic acid	335-67-1	5.2	0.44	1.8	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1.8	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1.8	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1.8	1

State of Alaska Lab Certification No. UST-061

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
14070	14 PFAS PW Water	EPA 537 Version 1.1	1	18362013	01/05/2019 20:09	Marissa C Drexinger	1	
14070	14 PFAS PW Water	EPA 537 Version 1.1	1	18362013	01/08/2019 16:51	Joshua P Trost	10	
14381	DW PFAS Prep	EPA 537 Version 1.1	1	18362013	12/29/2018 06:00	Robert Brown	1	

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:DIL-06 Grab Water
Alaska DECProject Name:Alaska DECSubmittal Date/Time:12/21/2018 11:20
12/17/2018 11:50
TAK30-06

WW 9953231

2021414

TestAmerica

ELLE Sample #:

ELLE Group #:

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 Vers	sion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.43	1.7	1
	NEtFOSAA is the acronym for N-ethyl perflue	orooctanesulfonami	doacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.43	1.7	1
	NMeFOSAA is the acronym for N-methyl per	fluorooctanesulfona	midoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	54	0.43	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.43	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	3.3	0.43	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	130	4.3	17	10
14070	Perfluorohexanoic acid	307-24-4	39	0.43	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.43	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	36	0.43	1.7	1
14070	Perfluorooctanoic acid	335-67-1	4.8	0.43	1.7	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.43	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.43	1.7	1

State of Alaska Lab Certification No. UST-061

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
14070	14 PFAS PW Water	EPA 537 Version 1.1	1	18362013	01/05/2019 20:20	Marissa C Drexinger	1	
14070	14 PFAS PW Water	EPA 537 Version 1.1	1	18362013	01/08/2019 17:02	Joshua P Trost	10	
14381	DW PFAS Prep	EPA 537 Version 1.1	1	18362013	12/29/2018 06:00	Robert Brown	1	

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

Sample Description:	DIL-07 Grab Water Alaska DEC	TestAmerica ELLE Sample #: ELLE Group #:	WW 9953232 2021414
Project Name:	Alaska DEC	Matrix: Water	
Submittal Date/Time: Collection Date/Time: SDG#:	12/21/2018 11:20 12/17/2018 13:30 TAK30-07		

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 Ver	sion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.43	1.7	1
	NEtFOSAA is the acronym for N-ethyl perflu	orooctanesulfonami	idoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.43	1.7	1
	NMeFOSAA is the acronym for N-methyl pe	rfluorooctanesulfona	amidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	0.47 J	0.43	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.43	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	N.D.	0.43	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	N.D.	0.43	1.7	1
14070	Perfluorohexanoic acid	307-24-4	N.D.	0.43	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.43	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.43	1.7	1
14070	Perfluorooctanoic acid	335-67-1	N.D.	0.43	1.7	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.43	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.43	1.7	1

State of Alaska Lab Certification No. UST-061

Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 20:32 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

TAK30-08

Sample Description: **DIL-08 Grab Water** Alaska DEC **Project Name:** Alaska DEC Submittal Date/Time: 12/21/2018 11:20 Collection Date/Time: 12/17/2018 14:00 SDG#:

State of Alaska Lab Certification No. UST-061

WW 9953233

2021414

TestAmerica

ELLE Sample #:

ELLE Group #:

Matrix: Water

5
7

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 \	/ersion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.43	1.7	1
	NEtFOSAA is the acronym for N-ethyl pe	erfluorooctanesulfonar	nidoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.43	1.7	1
	NMeFOSAA is the acronym for N-methy	l perfluorooctanesulfo	namidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	4.2	0.43	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.43	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	1.3 J	0.43	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	2.4	0.43	1.7	1
14070	Perfluorohexanoic acid	307-24-4	9.4	0.43	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.43	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.43	1.7	1
14070	Perfluorooctanoic acid	335-67-1	1.2 J	0.43	1.7	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.43	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.43	1.7	1

Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 20:55 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:DIL-09 Grab Water
Alaska DECProject Name:Alaska DECSubmittal Date/Time:12/21/2018 11:20
12/17/2018 14:20
TAK30-09

WW 9953234

2021414

TestAmerica

ELLE Sample #:

ELLE Group #:

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 Ver	sion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.42	1.7	1
	NEtFOSAA is the acronym for N-ethyl perflu	orooctanesulfonami	doacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.42	1.7	1
	NMeFOSAA is the acronym for N-methyl pe	rfluorooctanesulfona	amidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	2.5	0.42	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.42	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.42	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	0.85 J	0.42	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	12	0.42	1.7	1
14070	Perfluorohexanoic acid	307-24-4	4.0	0.42	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.42	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	5.0	0.42	1.7	1
14070	Perfluorooctanoic acid	335-67-1	2.0	0.42	1.7	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.42	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.42	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.42	1.7	1

State of Alaska Lab Certification No. UST-061

Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 21:07 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

Sample Description:	DIL-10 Grab Water Alaska DEC	TestAmerica ELLE Sample #: ELLE Group #:	WW 9953235 2021414
Project Name:	Alaska DEC	Matrix: Water	
Submittal Date/Time: Collection Date/Time: SDG#:	12/21/2018 11:20 12/17/2018 15:15 TAK30-10		

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS	MS Miscellaneous EPA	537 Version 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.45	1.8	1
	NEtFOSAA is the acronym for N-e	thyl perfluorooctanesulfonar	midoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.45	1.8	1
	NMeFOSAA is the acronym for N-	methyl perfluorooctanesulfo	namidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	11	0.45	1.8	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1.8	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1.8	1
14070	Perfluoroheptanoic acid	375-85-9	9.7	0.45	1.8	1
14070	Perfluorohexanesulfonate	355-46-4	7.0	0.45	1.8	1
14070	Perfluorohexanoic acid	307-24-4	44	0.45	1.8	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.45	1.8	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.45	1.8	1
14070	Perfluorooctanoic acid	335-67-1	1.9	0.45	1.8	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1.8	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1.8	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1.8	1

State of Alaska Lab Certification No. UST-061

Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 21:18 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:KIN-01 Grab Water
Alaska DECProject Name:Alaska DECSubmittal Date/Time:12/21/2018 11:20
12/18/2018 14:50
TAK30-11

TestAmerica

ELLE Sample #:

ELLE Group #:

Matrix: Water

5

WW 9953236

2021414

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS	MS Miscellaneous EPA 537	Version 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.42	1.7	1
	NEtFOSAA is the acronym for N-ethyl	perfluorooctanesulfona	midoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.42	1.7	1
	NMeFOSAA is the acronym for N-meth	yl perfluorooctanesulfo	namidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	3.4	0.42	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.42	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.42	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	0.87 J	0.42	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	1.2 J	0.42	1.7	1
14070	Perfluorohexanoic acid	307-24-4	7.5	0.42	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.42	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.42	1.7	1
14070	Perfluorooctanoic acid	335-67-1	2.4	0.42	1.7	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.42	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.42	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.42	1.7	1

State of Alaska Lab Certification No. UST-061

Sample Comments

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 21:30 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1				

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

WW 9953237

2021414

Sample Description:	KIN-02 (field blank) Grab Water Alaska DEC	TestAmerica ELLE Sample #: ELLE Group #:
Project Name:	Alaska DEC	Matrix: Water
Submittal Date/Time: Collection Date/Time: SDG#:	12/21/2018 11:20 12/18/2018 14:50 TAK30-12FB	

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 V	ersion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.42	1.7	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfona	midoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.42	1.7	1
	NMeFOSAA is the acronym for N-methyl	perfluorooctanesulfo	namidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	N.D.	0.42	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.42	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.42	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	N.D.	0.42	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	N.D.	0.42	1.7	1
14070	Perfluorohexanoic acid	307-24-4	N.D.	0.42	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.42	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.42	1.7	1
14070	Perfluorooctanoic acid	335-67-1	N.D.	0.42	1.7	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.42	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.42	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.42	1.7	1

State of Alaska Lab Certification No. UST-061

Sample Comments

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 21:41 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1				

Lancaster Laboratories

Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

State of Alaska Lab Certification No. UST-061

Analysis Report

Sample Description:	KIN-03 Grab Water Alaska DEC	Te EL FI	stAmerica LE Sample #: LE Group #:	WW 9953238 2021 <i>4</i> 14
Project Name:	Alaska DEC	Ma	trix: Water	2021414
Submittal Date/Time:	12/21/2018 11:20			
Collection Date/Time:	12/18/2018 15:10			
SDG#:	TAK30-13			
САТ		Method	Limit of	Dilution

No.	Analysis Name	CAS Number	Result	Detection Limit*	Quantitation	Factor
LC/MS/	MS Miscellaneous EPA 537	Version 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.43	1.7	1
	NEtFOSAA is the acronym for N-ethyl	perfluorooctanesulfonal	midoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.43	1.7	1
	NMeFOSAA is the acronym for N-meth	yl perfluorooctanesulfo	namidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	56	0.43	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.43	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	17	0.43	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	75	4.3	17	10
14070	Perfluorohexanoic acid	307-24-4	110	4.3	17	10
14070	Perfluorononanoic acid	375-95-1	N.D.	0.43	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	1.2 J	0.43	1.7	1
14070	Perfluorooctanoic acid	335-67-1	62	4.3	17	10
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.43	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.43	1.7	1

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
14070	14 PFAS PW Water	EPA 537 Version 1.1	1	18362013	01/05/2019 21:53	Marissa C Drexinger	1				
14070	14 PFAS PW Water	EPA 537 Version 1.1	1	18362013	01/08/2019 17:14	Joshua P Trost	10				
14381	DW PFAS Prep	EPA 537 Version 1.1	1	18362013	12/29/2018 06:00	Robert Brown	1				

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

Sample Description:	KIN-04 Grab Water Alaska DEC	TestAmerica ELLE Sample #: WW 99532 FLLE Group #: 2021414	WW 9953239 2021414	
Project Name:	Alaska DEC	Matrix: Water		
Submittal Date/Time:	12/21/2018 11:20			
Collection Date/Time:	12/18/2018 15:10			
SDG#:	TAK30-14			

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS	/MS Miscellaneous EPA 53	37 Version 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.44	1.7	1
	NEtFOSAA is the acronym for N-eth	yl perfluorooctanesulfonai	midoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.44	1.7	1
	NMeFOSAA is the acronym for N-m	ethyl perfluorooctanesulfo	namidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	51	4.4	17	10
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.44	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	17	0.44	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	72	4.4	17	10
14070	Perfluorohexanoic acid	307-24-4	99	4.4	17	10
14070	Perfluorononanoic acid	375-95-1	N.D.	0.44	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	1.4 J	0.44	1.7	1
14070	Perfluorooctanoic acid	335-67-1	62	4.4	17	10
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1.7	1

State of Alaska Lab Certification No. UST-061

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
14070	14 PFAS PW Water	EPA 537 Version 1.1	1	18362013	01/05/2019 22:05	Marissa C Drexinger	1				
14070	14 PFAS PW Water	EPA 537 Version 1.1	1	18362013	01/08/2019 17:26	Joshua P Trost	10				
14381	DW PFAS Prep	EPA 537 Version 1.1	1	18362013	12/29/2018 06:00	Robert Brown	1				

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:KIN-05 Grab Water
Alaska DECProject Name:Alaska DECSubmittal Date/Time:12/21/2018 11:20
12/18/2018 15:50
TAK30-15

TestAmerica

ELLE Sample #:

ELLE Group #:

Matrix: Water

WW 9953240	
2021414	

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 Vei	rsion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.43	1.7	1
	NEtFOSAA is the acronym for N-ethyl perflu	uorooctanesulfonam	idoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.43	1.7	1
	NMeFOSAA is the acronym for N-methyl pe	erfluorooctanesulfona	amidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	0.96 J	0.43	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.43	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	0.77 J	0.43	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	1.8	0.43	1.7	1
14070	Perfluorohexanoic acid	307-24-4	2.1	0.43	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.43	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.43	1.7	1
14070	Perfluorooctanoic acid	335-67-1	2.0	0.43	1.7	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.43	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.43	1.7	1

State of Alaska Lab Certification No. UST-061

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 22:16 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1		

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:KIN-06 Grab Water
Alaska DECProject Name:Alaska DECSubmittal Date/Time:12/21/2018 11:20
12/18/2018 16:10
TAK30-16

WW 9953241

2021414

TestAmerica

ELLE Sample #:

ELLE Group #:

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 Ver	sion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.43	1.7	1
	NEtFOSAA is the acronym for N-ethyl perflu	orooctanesulfonam	idoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.43	1.7	1
	NMeFOSAA is the acronym for N-methyl pe	rfluorooctanesulfon	amidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	N.D.	0.43	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.43	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	N.D.	0.43	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	N.D.	0.43	1.7	1
14070	Perfluorohexanoic acid	307-24-4	1.6 J	0.43	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.43	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.43	1.7	1
14070	Perfluorooctanoic acid	335-67-1	2.0	0.43	1.7	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.43	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.43	1.7	1

State of Alaska Lab Certification No. UST-061

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 22:28 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1		

Sample Description:

Project Name:

14070

14070

14070

14070

14070

Lancaster Laboratories

KIN-07 Grab Water

Environmental

Alaska DEC

Alaska DEC

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

WW 9953242

2021414

1

1

1

1

1

TestAmerica

ELLE Sample #:

ELLE Group #:

Matrix: Water

1.7

1.7

1.7

1.7

1.7

Submit Collect SDG#:	tal Date/Time: 12/21/2018 ion Date/Time: 12/18/2018 TAK30-17	11:20 16:40				
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS	MS Miscellaneous EPA 5	37 Version 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.42	1.7	1
	NEtFOSAA is the acronym for N-eth	yl perfluorooctanesulfona	nidoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.42	1.7	1
	NMeFOSAA is the acronym for N-m	ethyl perfluorooctanesulfo	namidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	0.55 J	0.42	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.42	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.42	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	3.3	0.42	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	2.1	0.42	1.7	1
14070	Perfluorohexanoic acid	307-24-4	3.1	0.42	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.42	1.7	1

N.D.

2.9

N.D.

N.D.

N.D.

State of Alaska Lab Certification No. UST-061

Perfluoro-octanesulfonate

Perfluorotetradecanoic acid

Perfluorotridecanoic acid

Perfluoroundecanoic acid

Perfluorooctanoic acid

Sample Comments

0.42

0.42

0.42

0.42

0.42

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 22:39 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1		

1763-23-1

335-67-1

376-06-7

72629-94-8

2058-94-8

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:KIN-08 Grab Water
Alaska DECProject Name:Alaska DECSubmittal Date/Time:12/21/2018 11:20
12/18/2018 16:45
TAK30-18

Analysis Report

WW 9953243

2021414

TestAmerica

ELLE Sample #:

ELLE Group #:

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS	MS Miscellaneous EPA 537 Vei	sion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.44	1.8	1
	NEtFOSAA is the acronym for N-ethyl perflu	orooctanesulfonam	idoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.44	1.8	1
	NMeFOSAA is the acronym for N-methyl pe	rfluorooctanesulfon	amidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	1.5 J	0.44	1.8	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.44	1.8	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1.8	1
14070	Perfluoroheptanoic acid	375-85-9	1.1 J	0.44	1.8	1
14070	Perfluorohexanesulfonate	355-46-4	2.4	0.44	1.8	1
14070	Perfluorohexanoic acid	307-24-4	5.3	0.44	1.8	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.44	1.8	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.44	1.8	1
14070	Perfluorooctanoic acid	335-67-1	5.0	0.44	1.8	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1.8	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1.8	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1.8	1

State of Alaska Lab Certification No. UST-061

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 23:03 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1		

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Sample Description:KIN-09 Grab Water
Alaska DECProject Name:Alaska DECSubmittal Date/Time:12/21/2018 11:20
12/18/2018 17:00
TAK30-19

TestAmerica ELLE Sample #: WV ELLE Group #: 202 Matrix: Water

WW 9953244 2021414

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
LC/MS/	MS Miscellaneous EPA 537 Ver	sion 1.1	ng/l	ng/l	ng/l	
14070	NEtFOSAA	2991-50-6	N.D.	0.44	1.8	1
	NEtFOSAA is the acronym for N-ethyl perflu	orooctanesulfonami	doacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.44	1.8	1
	NMeFOSAA is the acronym for N-methyl per	fluorooctanesulfona	midoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	0.73 J	0.44	1.8	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.44	1.8	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1.8	1
14070	Perfluoroheptanoic acid	375-85-9	0.99 J	0.44	1.8	1
14070	Perfluorohexanesulfonate	355-46-4	2.0	0.44	1.8	1
14070	Perfluorohexanoic acid	307-24-4	4.6	0.44	1.8	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.44	1.8	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.44	1.8	1
14070	Perfluorooctanoic acid	335-67-1	5.7	0.44	1.8	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1.8	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1.8	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1.8	1

State of Alaska Lab Certification No. UST-061

Sample Comments

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 23:14 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1	

Sample Description:

Lancaster Laboratories

KIN-10 Grab Water

Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

TestAmerica

	•	Alaska DEC	EL	LE Sample #: LE Group #:	WW 9953245 2021414		
Project Name: AI		Alaska DEC		Ma	Matrix: Water		
Submi	ttal Date/Time:	12/21/2018 11:20					
Collection Date/Time:		12/18/2018 17:30					
SDG#	:	TAK30-20					
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor	
LC/MS	S/MS Miscellaneou	IS EPA 537 Version 1.1	ng/l	ng/l	ng/l		

14070	NEtFOSAA	2991-50-6	N.D.	0.42	1.7	1
	NEtFOSAA is the acronym for N-ethyl perfl	uorooctanesulfonam	idoacetic Acid.			
14070	NMeFOSAA	2355-31-9	N.D.	0.42	1.7	1
	NMeFOSAA is the acronym for N-methyl pe	erfluorooctanesulfon	amidoacetic Acid.			
14070	Perfluorobutanesulfonate	375-73-5	N.D.	0.42	1.7	1
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.42	1.7	1
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.42	1.7	1
14070	Perfluoroheptanoic acid	375-85-9	N.D.	0.42	1.7	1
14070	Perfluorohexanesulfonate	355-46-4	N.D.	0.42	1.7	1
14070	Perfluorohexanoic acid	307-24-4	0.50 J	0.42	1.7	1
14070	Perfluorononanoic acid	375-95-1	N.D.	0.42	1.7	1
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.42	1.7	1
14070	Perfluorooctanoic acid	335-67-1	0.55 J	0.42	1.7	1
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.42	1.7	1
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.42	1.7	1
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.42	1.7	1

State of Alaska Lab Certification No. UST-061

Sample Comments

	Laboratory Sample Analysis Record														
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor								
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18362013 18362013	01/05/2019 23:26 12/29/2018 06:00	Marissa C Drexinger Robert Brown	1 1								

Sample Description:

Submittal Date/Time:

Project Name:

Lancaster Laboratories Environmental

KIN-11 Grab Water

Alaska DEC

Alaska DEC

12/21/2018 11:20

Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

WW 9953246

2021414

TestAmerica

ELLE Sample #:

ELLE Group #:

Matrix: Water

Collecti SDG#:	Collection Date/Time: 12/19/2018 10:15 SDG#: TAK30-21												
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor							
LC/MS/	MS Miscellaneous EPA 53	7 Version 1.1	ng/l	ng/l	ng/l								
14070	NEtFOSAA	2991-50-6	N.D.	0.46	1.8	1							
	NEtFOSAA is the acronym for N-ethy	l perfluorooctanesulfonar	midoacetic Acid.										
14070	NMeFOSAA	2355-31-9	N.D.	0.46	1.8	1							
	NMeFOSAA is the acronym for N-me	ethyl perfluorooctanesulfo	namidoacetic Acid.										
14070	Perfluorobutanesulfonate	375-73-5	0.76 J	0.46	1.8	1							
14070	Perfluorodecanoic acid	335-76-2	N.D.	0.46	1.8	1							
14070	Perfluorododecanoic acid	307-55-1	N.D.	0.46	1.8	1							
14070	Perfluoroheptanoic acid	375-85-9	0.87 J	0.46	1.8	1							
14070	Perfluorohexanesulfonate	355-46-4	2.3	0.46	1.8	1							
14070	Perfluorohexanoic acid	307-24-4	4.9	0.46	1.8	1							
14070	Perfluorononanoic acid	375-95-1	N.D.	0.46	1.8	1							
14070	Perfluoro-octanesulfonate	1763-23-1	N.D.	0.46	1.8	1							
14070	Perfluorooctanoic acid	335-67-1	6.0	0.46	1.8	1							
14070	Perfluorotetradecanoic acid	376-06-7	N.D.	0.46	1.8	1							
14070	Perfluorotridecanoic acid	72629-94-8	N.D.	0.46	1.8	1							
14070	Perfluoroundecanoic acid	2058-94-8	N.D.	0.46	1.8	1							

State of Alaska Lab Certification No. UST-061

Sample Comments

	Laboratory Sample Analysis Record													
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor							
14070 14381	14 PFAS PW Water DW PFAS Prep	EPA 537 Version 1.1 EPA 537 Version 1.1	1 1	18363006 18363006	01/04/2019 02:39 12/30/2018 16:00	Marissa C Drexinger Anthony C Polaski	1 1							

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

Quality Control Summary

Client Name: TestAmerica Reported: 01/14/2019 11:17 Group Number: 2021414

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Method Blank

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

	- <i>v</i>		
Analysis Name	Result	MDL**	LOQ
	ng/l	ng/l	ng/l
Batch number: 18362013	Sample number(s): 9953226-99	53245
NEtFOSAA	N.D.	0.50	2.0
NMeFOSAA	N.D.	0.50	2.0
Perfluorobutanesulfonate	N.D.	0.50	2.0
Perfluorodecanoic acid	N.D.	0.50	2.0
Perfluorododecanoic acid	N.D.	0.50	2.0
Perfluoroheptanoic acid	N.D.	0.50	2.0
Perfluorohexanesulfonate	N.D.	0.50	2.0
Perfluorohexanoic acid	N.D.	0.50	2.0
Perfluorononanoic acid	N.D.	0.50	2.0
Perfluoro-octanesulfonate	N.D.	0.50	2.0
Perfluorooctanoic acid	N.D.	0.50	2.0
Perfluorotetradecanoic acid	N.D.	0.50	2.0
Perfluorotridecanoic acid	N.D.	0.50	2.0
Perfluoroundecanoic acid	N.D.	0.50	2.0
Batch number: 18363006	Sample number(s): 9953246	
NEtFOSAA	N.D.	0.50	2.0
NMeFOSAA	N.D.	0.50	2.0
Perfluorobutanesulfonate	N.D.	0.50	2.0
Perfluorodecanoic acid	N.D.	0.50	2.0
Perfluorododecanoic acid	N.D.	0.50	2.0
Perfluoroheptanoic acid	N.D.	0.50	2.0
Perfluorohexanesulfonate	N.D.	0.50	2.0
Perfluorohexanoic acid	N.D.	0.50	2.0
Perfluorononanoic acid	N.D.	0.50	2.0
Perfluoro-octanesulfonate	N.D.	0.50	2.0
Perfluorooctanoic acid	N.D.	0.50	2.0
Perfluorotetradecanoic acid	N.D.	0.50	2.0
Perfluorotridecanoic acid	N.D.	0.50	2.0
Perfluoroundecanoic acid	N.D.	0.50	2.0

LCS/LCSD

Analysis Name	LCS Spike	LCS	LCSD Spike	LCSD	LCS	LCSD	LCS/LCSD	RPD
	Added	Conc	Added	Conc	%REC	%REC	Limits	
	ng/l	ng/l	ng/l	ng/l				

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

RPD

Max

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

Quality Control Summary

Client Name: TestAmerica Reported: 01/14/2019 11:17 Group Number: 2021414

			LCS/LCSD						
Analysis Name	LCS Spike Added ng/l	LCS Conc ng/l	LCSD Spike Added ng/l	LCSD Conc ng/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 18362013	Sample number	(s): 9953226-9	9953245						
NEtFOSAA	80	96.93	80	88.19	121	110	70-130	9	30
NMeFOSAA	80	92.21	80	89.91	115	112	70-130	3	30
Perfluorobutanesulfonate	70.76	74.25	70.76	72.25	105	102	70-130	3	30
Perfluorodecanoic acid	80	88.68	80	83.54	111	104	70-130	6	30
Perfluorododecanoic acid	80	89.81	80	82.37	112	103	70-130	9	30
Perfluoroheptanoic acid	80	84.18	80	83.65	105	105	70-130	1	30
Perfluorohexanesulfonate	75.64	81.12	75.64	85.31	107	113	70-130	5	30
Perfluorohexanoic acid	80	82.76	80	83.45	103	104	70-130	1	30
Perfluorononanoic acid	80	83.17	80	83.37	104	104	70-130	0	30
Perfluoro-octanesulfonate	76.48	74.5	76.48	74.69	97	98	70-130	0	30
Perfluorooctanoic acid	80	87	80	82.61	109	103	70-130	5	30
Perfluorotetradecanoic acid	80	83.32	80	81.06	104	101	70-130	3	30
Perfluorotridecanoic acid	80	93.25	80	91.1	117	114	70-130	2	30
Perfluoroundecanoic acid	80	90.07	80	90.46	113	113	70-130	0	30
Batch number: 18363006	Sample number	(s): 9953246							
NEtFOSAA	20	22.44			112		70-130		
NMeFOSAA	20	21.28			106		70-130		
Perfluorobutanesulfonate	18.12	17.2			95		70-130		
Perfluorodecanoic acid	20.48	21.08			103		70-130		
Perfluorododecanoic acid	20.48	20.88			102		70-130		
Perfluoroheptanoic acid	20.48	20.01			98		70-130		
Perfluorohexanesulfonate	19.36	19.37			100		70-130		
Perfluorohexanoic acid	20.48	19.61			96		70-130		
Perfluorononanoic acid	20.48	20.32			99		70-130		
Perfluoro-octanesulfonate	19.58	18.29			93		70-130		
Perfluorooctanoic acid	20.48	20.21			99		70-130		
Perfluorotetradecanoic acid	20.48	21.29			104		70-130		
Perfluorotridecanoic acid	20.48	20.5			100		70-130		
Perfluoroundecanoic acid	20.48	21.86			107		70-130		

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-6766 • www.EurofinsUS.com/LancLabsEnv

Analysis Report

Quality Control Summary

Client Name: TestAmerica Reported: 01/14/2019 11:17 Group Number: 2021414

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: 14 PFAS PW Water Batch number: 18362013

	13C2-PFHxA	13C2-PFDA	D5-NetFOSAA	
9953226	103	104	95	
9953227	99	105	105	
9953228	96	94	96	
9953229	98	102	91	
9953230	100	102	106	
9953231	100	103	102	
9953232	100	107	104	
9953233	92	93	100	
9953234	115	113	114	
9953235	87	108	112	
9953236	99	102	95	
9953237	114	113	112	
9953238	91	96	89	
9953239	104	108	115	
9953240	103	109	105	
9953241	109	118	120	
9953242	117	125	116	
9953243	125	123	130	
9953244	114	107	127	
9953245	102	98	97	
Blank	101	102	100	
LCS	95	101	103	
LCSD	102	99	95	
Limits:	70-130	70-130	70-130	
	mo: 14 DEAS DW/ W/a	for		

Analysis Name: 14 PFAS PW Water Batch number: 18363006

Daton number.	1000000		
	13C2-PFHxA	13C2-PFDA	D5-NetFOSAA
9953246	93	93	88
Blank	95	100	97
LCS	97	107	94
Limits:	70-130	70-130	70-130

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

estAmerica Sacramento

880 Riverside Parkway

Nest Sacranento, CA 95605 Phone: 916 373 5600 Fax		_		_				ħ.	^			uA.						THE LEADER IN ENV	aboratories, Inc
	Regulat	ory Pro	gram:] dw [NPDES		RCR	X	Other:	<u>(e</u>	PU	<u>#</u>							TAL-8210 (0713
Client Contact	Project Man	ager:An	nemar	ie Valv	nlen	Site	Cont	act:				Date:						COC No:	000
Company Name: ALASKA DEC	Tel/Fax:90	<u>F. Fuie</u>	-3189			Lab	Cont	act:	1 1			Carri	ər:						
Address: 410 Willough by Ave	An	alysis II	urnaround	Time														Sampler:	···
City/State/Zip: Juneary, Arc -1901		R DAYS		KING DAY	5	_	[h]											Walk-in Client	۰. ۲
Phone: $907 - 100 - 5109$		different fro	om Below				in											Lah Sampling	
Project Name:		2	weeks			< 돈 논	יַטןי											Eus oumpring.	
Site:		1	davs			20												Job / SDG No.:	
PO#		1	dav			ald N	2												
			Sample	Π		MS	イ											2014-12-22-2012-00/17/12/07/24/25/2012/26/07/2012/26/07/10/26/07/25/25/27/10/26/07/26/07/25/25/27/10/26/07/25/	*****
	Sample	Sample	Туре		4.4	orned	12												
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	# of Cont.	Filte Perf	\leq											Sample Sp	ecific Notes:
DU-01	1217190)940	61	WA		М	X												
DIL-02	12-17-18	HO	G	WA	1	M	Х												
DIL-03	12-17-18	1110	Ġ	WA	ĺ	M	X												
DIL-04	12-17-18	120	6	WK	1	M	Х										_		
DIL-OS	12-17-18	150	<u> </u>	WA		M	Х												a dada da ana ang sa
DIL-OG	12.17.18	150	6	WA	<u> </u>	M	X												
DIL-07	12-17-181	330	6	WA		Μ_	X												
DIL-03	1217181	400	G	WA	1	Μ	И					<u> </u>							
DIL-09	12-17-18	420	9	WA	1	M	X												
DIL-10	12-17-18/1	515	G	ŴŔ)	N_	X												
KINDI	12-18-18	450	G	WĄ		N_	X										_		
K-IN-D2 (field blank-)	12-18-181	450	<u>6</u>	<u> WK</u>	<u> </u>	M	X	SANA BARAD		10	3032 2009			27250 4225	10. 1993				
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH; 6=	Otner				S	ampl	Dieno			nav he		l l	sam	nles a	ro rota	ained	longer than 1 mg	unth)
Are any samples from a listed EPA Hazardous Waste? Please	se List any EP	A Waste	Codes for	the samp	ole in th	e 🛛	ampi	e Dispt	5ai (7	1001	ilay be	6 0336	536U II	Sam	pies a	le lete	anneu	nonger than i me	interior in the second s
Non-Hazard Flammable Skin Irritant	Poison B		Unkno	own		-	R	eturn to	Client		X	isposal t	iy Lab			Archive f	for	Months	
Special Instructions/QC Requirements & Comments:		1									<u> </u>								
email results to: annema	rieip	alm	leri	@al	a51	La	. ge	\sim											
Custody Seals Intact: Yes No	Custody Sea	al No.:						Co	oler Te	mp. (°	'C): Ob	s'd:	2.0	_ Co	'r'd:			Therm ID No.:	
Relinquished by:	Company:	7,		Date/Tir	ne: 116 0	96 R	eceiv	ed by:				Wildowski w Land	Con	npany	:			Date/Time:	
Relinquished by:	Company:	<u> </u>		Date/Tir	ne:	R	eceiv	ed by:					Corr	pany			aher and an	Date/Time:	
Relinquished by:	Gompany:			Date/Tir	ne:	P	ecpiv	ed in La	aborato	ory by:			Corr	ipany	:			Date/Time:	1120

30939 Chain of Custody Record 214965 TestAmerica

TestAmerica Sacramento

880 Riverside Parkuau

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

llest Sacranento, CA 95605 Phone: 916.373.5600 Fax:	Regu	atory Pro	gram: [] dw	NPDES		RCF	ra	t Other	LE	RU	LA					THE LEADER IN ENV TestAmerica L	aboratories, Inc. TAL-8210 (0713)
Client Contact	Project M	anagerAN	remar	iePall	nier	Site	Con	tact:	farketsillerer	*******		Date	•				COC No:	
Company Name: ALAGKA DEDT. OF ENV. LUNS.	Tel/Fax: 🤇	707-7	66-3	184		Lab	Con	tact:				Carr	ier:		and the second second	anderson in Dark Science	of	COCs
Address: 410 Willoygh by Ara		Analysis T	urnaround	Time													Sampler:	
City/State/Zip: Tunear AK 1980	CALEN	DAR DAYS		RKING DAY	S												For Lab Use Only	/:
$\frac{\text{Phone: } (10.1 - 10.10^{-3}) \times 84}{\text{Environ (20.10)} \times 84}$		T if different fro	m Below			Z	z										Walk-In Client:	
Project Name:		2	weeks			Z	£β										Lab Sampling.	
Site:		1	davs			٦۵	g_{λ}										Job / SDG No :	
P O #		1	days			nple				Ì								
88 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 			Sample			Sar		1										
	Sample	Sample	Туре		# of	Form	n l											
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	Cont.	Filte	പില										Sample Sp	ecific Notes:
KIN-03	1218-18	1510	6	WA		Ν	X											
K-IN-04	121818	1510	6	WA	Î	N	Х											
KAN-OS	12-18-18	1550	6	ŴA	<u> </u>	N	K											
KIN-OLE	12-18-18	160	Ĝ	WA]	N	X											
KIN-07	12-1818	1640	6	WA		N	ĺΧ											
KIN-08	12-18-16	1645	6	WA	1	Ń	Х											
KIN-09 (Markanarahana)	12-18-18	1700	G	WA	1	Ň	X											
KIN-10 00.	12-18-18	730	G	WA	1	N	X											
KIN-11	12-19-1	80:15	6	WA	1	М	X											
							ľ											
							Τ											
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH; (6= Other																
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleas	e List any E	PA Waste	Codes for I	the samp	le in th	e S	amp	le Dis	sposal (A fee	may l	be asse	ssed if	samp	les are	retaine	d longer than 1 mo	nth)
Comments Section if the lab is to dispose of the sample.	·				novemi stali mata analis													
🗙 Non-Hazard 🔅 🗌 Flammable 🗌 Skin Irritant	Poison	В	Unkno	own			I []	Return	to Client		<u> </u>	Disposal	by Lab		Are	hive for	Months	
Special Instructions/QC Requirements & Comments:	5 -	ad	· ۱	0 -	100	م م ا												
email vesulesto: america	VICE	pain	1 EVI	ea	100	¢A	Ĵ	02	,									
Custody Seals Intact: 🔿 🗌 Yes 🗌 No	Custody S	eal No.:							Cooler T	emp.	(°C): C	bs'd:	$\tilde{\mathfrak{Z}}_{i}$	_ Corr	'd:		Therm ID No.:	
Relinquished by:	Company:			Date/Tir	ne: (4) (14)	R	eceiv	/ed by	/:				Com	pany:			Date/Time:	
Relinquished by:	Company:			Date/Tir	<u>v v</u> ((ne:	R	eceiv	/ed by	/:				Con	pany:			Date/Time:	
	****							<u> </u>										
Relinquished by:	Company:			Date/Tir	ne:	R	eceiv	ied in	Labora	tory by	y:		Com	pany:			Date/Time: 12-21-18	1120
Arr	rival Cone	lition Summary																
--------------------------------------	------------	-------------------------------------																
Shipping Container Sealed:	Yes	Sample IDs on COC match Containers:																
Custody Seal Present:	Yes	Sample Date/Times match COC:																
Custody Seal Intact:	Yes	VOA Vial Headspace ≥ 6mm:																
Samples Chilled:	Yes	Total Trip Blank Qty:																
Paperwork Enclosed:	Yes	Air Quality Samples Present:																
Samples Intact:	Yes																	
Missing Samples:	No																	
Extra Samples:	No																	
Discrepancy in Container Qty on COC:	No																	

Unpacked by Cory Jeremiah (10469) at 17:44 on 12/21/2018

			Samples	s Chille	d Details		
The	ermometer Types.	DT = Digi	ital (Temp. Bottle	e) IR =	Infrared (Sur	face Temp)	All Temperature
Cooler #	Thermometer ID	Corrected Temp	Therm. Type	Ice Type	Ice Present?	Ice Container	Elevated Temp?
1	DT42-02	5.0	DT	Wet	Y	Loose	Ν

Page 1 of 1

2425 New Holland Pike Lancaster, PA 17605-2425 Page 29 of 31

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

BMQL	Below Minimum Quantitation Level	mL	milliliter(s)
C	degrees Celsius	MPN	Most Probable Number
cfu	colony forming units	N.D.	non-detect
CP Units	cobalt-chloroplatinate units	ng	nanogram(s)
F	degrees Fahrenheit	NTU	nephelometric turbidity units
g	gram(s)	pg/L	picogram/liter
IU	International Units	RL	Reporting Limit
kg	kilogram(s)	TNTC	Too Numerous To Count
L	liter(s)	μg	microgram(s)
lb.	pound(s)	μL	microliter(s)
m3	cubic meter(s)	umhos/cm	micromhos/cm
meq	milliequivalents	MCL	Maximum Contamination Limit
mg	milligram(s)		
<	less than		
>	greater than		
ppm	parts per million - One ppm is equivalent aqueous liquids, ppm is usually taken to l verv close to a kilogram. For gases or va	to one milligram per be equivalent to milli apors, one ppm is eq	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client. Lancaster Laboratories

Environmental

Data Qualifiers

5
7
8

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
K1	Initial Calibration Blank is above the QC limit and the sample result is ND
K2	Continuing Calibration Blank is above the QC limit and the sample result is ND
K3	Initial Calibration Verification is above the QC limit and the sample result is ND
K4	Continuing Calibration Verification is above the QC limit and the sample result is ND
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
P^	Concentration difference between the primary and confirmation column > 40%. The higher result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

.estAmerica Sacramento 880 Riverside Parkway

ſ

3

5

Ŧ

9

11

Chain of Custody Record 214965

Test

THE LEADER IN ENVIRONMENTAL TESTING

2:

Nest Sacranento, CA 95605 Phone: 916.373.5600 Fax:	Regulatory Pro	ogram: 🗍 dw 🗌 NI	DES			er: (E	PULT	Ĉ	29	00	THE LEADER IN TestAmeric	ENVIRONMENTAL TESTING a Laboratories, Inc. TAL-8210 (0713)
Client Contact	Project Manager:Av	memarie Palmi	i si	te Cor	itact:		Date	:	¥. /		COC No:	
Company Name: ALASKA DEC	Tel/Fax:907.701	6-3184	La	ıb Cor	tact:		Carr	ler:			of	2 COCs
Address: 410 Willoumun Ave	Analysis 1	furnaround Time		Π							Sampler:	
City/State/Zip: TUNEarl, AK_99801	CALENDAR DAYS	WORKING DAYS		LA							For Lab Use (Only:
Phone: 907-766-3184	TAT if different f	rom Below		EK							Walk-in Client:	
Fax: 0107-7410-3185		2 weeks	Î	>\s							Lab Sampling:	
Project Name:		1 week	7	12L								
Site:		2 days	ee (50							Job / SDG No.	•
PO#		1 day	Ē	52								
		Sample Type	s p	E								
	Sample Sample	(C=Comp, #	of Let	ξĘ								
Sample Identification	Date lime	G=Grab) Matrix Co	n E	4.7		┝╼╍┝╼╍┝		_	++		Sample	Specific Notes:
DIL-OI	1217190940	G WA I	_ <u>M</u>	X					<u> </u>			
DIL-02	12-17-18 1040	G WA I		ĻХ								
DIL-03	12-17-18 1110	GWA		LX								
DIL-04	12-17-18 1120	GWAI	_M	X								
DIL-05	12-17-18 150	G WA I	N	ТХ								
DIL-OG	12-17-18 1150	G WA /	Μ	X								
DIL-07	12-17-18 1330	G WA I	M	X						580-8	32900 Chain of Cu	
DIL-08	12-17-18 1400	G WA 1	M	ľX								5100 y
DIL-09	12-17-18 420	GWAI	N	X								
DIL-ID	12-17-18/15/15	G WA /	N	X								
EINDI	2-18-18 1450	G WA I	N	X								
K-IN-02 (field blank-)	12-18-18 1450	GWAI	N	X								
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH; 6= Other _					3.44						
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleas	e List any EPA Waste	Codes for the sample in	the	Sampi	e Disposal	(A fee m	ay be asse:	ssed if sa	mples	are retain	ed longer than 1	month)
Non-Hazard Flammable Skin Irritant	Polson B	Unknown		[] f	teturn to Client		X Disposal t	y Lab		Archive for_	Months	
Special Instructions/QC Requirements & Comments:	τ í											
email regults to: annema	rieipalm	leri Qalas	ska	l.g.								
Custody Seals Intact: Yes No	Custody Seal No.:				Cooler	Temp. (°C): Obs'd:	<u>). V</u> _C	orr'd:		_ Therm ID No.:	
Relinquished by:	Company:	Date/Time:	Ma	Receiv	ed by:			Compar	ıy:		Date/Time:	
Relinquished by:	Company:	Date/Time:		Receiv	ed by:			Compar	ny:	Carbon Carbon Carbon	Date/Time:	
Kelinguished by:	Sempany:	Date/ lime:	ľ	xeceiv	ed in Labora	nory by:		Compar FLL	ny: Br		Date/Time:	1120

8

TestAmerica Sacramento 880 Riverside Parkway

llest Sacramento, CA 95605

THE LEADER IN ENVIRONMENTAL TESTING

5

8

Phone: 916.373.5600 Fax:	Regulatory Program:		DECEN MONTHAN (PN)	+ 82.900	TestAmerica Laboratories, Inc.
Client Contact	Project Manager Anin PILA	CR Pallantar	Site Contact:	Date:	TAL-8210 (6713)
Company Name: ALASKA DEDT. OF ENV. LUNS	Tel/Fax: 907-71010-2	3184	Lab Contact:	Carrier:	1/ of 1/ COCs
Address: 410 Willough by Ara	Analysis Turnarour	d Time			Sampler:
City/State/Zip: JUNEAR, AK 99801	CALENDAR DAYS IN W	ORKING DAYS			For Lab Use Only:
Phone: 907-746-3184	TAT if different from Below				Walk-in Client:
Fax: 907-766-3185	2 weeks		220		Lab Sampling:
Project Name:	I week		224		Bart
Site:	2 days		Jase C		Job / SDG No.:
P 0#	1 day				
	Sample				
	Sample Sample (C=Comp,	#of			
Sample Identification	Date Time G=Grab)	Matrix Cont.			Sample Specific Notes:
KIN-03	1218-18 1510 G	WA	NIX		
K-IN-04	121818 1510 6	WA II	M X I I I I		
KAN-OS	12-18-18 1550 6	WAIN			
KIN-Q6	121818/1610 G	WALL			
KIN-07	12-1818/1440 6	WAIN			
KIN-08	12-18-16/1645 G	WALK			
KIN-09 Hannbarmanahama)	12-18-181700 G	WA !			
KIN-10 00	12/8/8/730 GI	WALL N			
KIN-11	12-19-1810:15 6	WAIN	M X IIII		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH; 6= Other				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please	e List any EPA Waste Codes for	the sample in the	Sample Disposal (A fee may be a	ssessed if samples are retained	d longer than 1 month)
Comments Section if the lab is to dispose of the sample.					
KI Non-Hazard I Hammable Skin Irritant	L Poison B Unkn	own	Return to Client	osal by Lab Archive for	Months
email verilizato: annena	vie, palmieri	ealask	A. 902		
Custody Seals Intact: A Ves No	Custody Seal No.:		Cooler Temp. ("C): Obs'd	- 5,0 Corr'd:	Therm ID No.:
Relinquished by:	Company:	Date/Time:	Received by:	Company:	Date/Time:
Relinguished by:	Company:	Date/Time:	Received by:	Company:	Date/Time:
Relinguished by	Company:	Data/Timo:	Referred in Laboratory by	Component	
i contiguiorioù by.	¢ompαny. ⊾		indeenvero in Laupratory by:	E-U-C	12-21-18 112D

Laboratory Data Review Checklist

Completed By:

Cacy Wilfer

Title:

Environmental Engineering Staff

Date:

March 12, 2019

CS Report Name:

King Salmon DOT&PF PFAS

Report Date:

January 16, 2019

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

TestAmerica Laboratories, Inc.

Laboratory Report Number:

580-82900-1

ADEC File Number:

Hazard Identification Number:

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?

[○] Yes [●] No Comments:

ADEC has not approved an analytical laboratory for analysis of PFAS. However, the laboratory is certified for perfluorinated alkyl acids in drinking water analysis by the National Environmental Laboratory Accreditation Program (NELAP) in Oregon.

- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
 - [○] Yes [●] No Comments:

ADEC has not approved an analytical laboratory for analysis of all submitted PFAS. However, Eurofins Lancaster Laboratories is certified for PFOS and PFOA in drinking water analysis by ADEC.

- 2. <u>Chain of Custody (CoC)</u>
 - a. CoC information completed, signed, and dated (including released/received by)?

	Yes	O No	Comments:
b. (Correct Ana	lyses requested?	
	• Yes	© No	Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

	Yes	🔿 No	Comments:
b.	Sample pres Volatile Chi	servation lorinated	acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Solvents, etc.)?
	Yes	© No	Comments:
An	alysis of PFA	AS does 1	not require a preservative other than temperature control.

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

• Yes • No Comments:

The sample receipt form notes that the samples were received in good condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

[○] Yes [●] No Comments:

There were no discrepancies documented by the laboratory.

e. Data quality or usability affected?

Comments:

The data quality and/or usability were not affected.

4. <u>Case Narrative</u>

a. Present and understandable?

• Yes • No Comments:

The samples arrived in good condition, properly preserved, and that the temperature of the sample cooler upon receipt at the laboratory was 5.0° C.

b. Discrepancies, errors, or QC failures identified by the lab?

○ Yes ⊙ No Comments:

There were no discrepancies, errors, or QC failures documented in the case narrative.

c. Were all corrective actions documented?

🔿 Yes 💿 No

Comments:

N/A; there were no corrective actions documented in the case narrative.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The case narrative does not note an effect on data quality/usability.

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

• Yes • No Comments:

b. All applicable holding times met?

• Yes • No Comments:

The laboratory indicates that the water samples were analyzed using direct injection and in-line analysis. The 28-day hold time for analysis was met for all samples.

c. All soils reported on a dry weight basis?

○ Yes No Comments:

N/A; soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

• Yes O No Comments:

The LOQ is less than applicable ADEC action level for drinking water and ADEC groundwater cleanup levels for PFOS and PFOA.

e. Data quality or usability affected?

The data quality and usability were not affected.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

• Yes • No Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

• Yes • No Comments:

iii. If above LOQ, what samples are affected?

Comments:

None; PFAS compounds were not detected in method blank sample.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

○ Yes ● No Comments:

Qualification of the results was not required; see above.

v. Data quality or usability affected?

Comments:

The data quality and/or usability were not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
 - Yes No Comments:

LCS/LCSD samples were reported for PFAS analyses.

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Metals and inorganics were not analyzed as part of this work order.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

• Yes O No

Comments:

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

• Yes • No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

N/A; analytical accuracy and precision were within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

○ Yes ⊙ No Comments:

Qualification of the data was not required; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and usability were not affected.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?

• Yes • No Comments:

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

💿 Yes ု No	Comments:
------------	-----------

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

O Yes 🛛 💿 No

Comments:

N/A; there were no IDA recovery failures associated with this work order.

iv. Data quality or usability affected?

Comments:

The data quality and usability are not affected; see above.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not onter explanation below.)

(If not, enter explanation below.)

○ Yes ● No Comments:

PFAS are not volatile compounds; therefore, a trip blank is not required.

- ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
- O Yes
 No
 Comments:

 N/A; a trip blank is not required.
 Image: Second Seco

iii. All results less than LOQ?

○ Yes ⊙ No Comments:

N/A; a trip blank is not required.

iv. If above LOQ, what samples are affected?

Comments:

None; a trip blank was not submitted with this work order.

v. Data quality or usability affected?

Comments:

The data quality and usability were not affected; see above.

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

• Yes • No Comments:

ii. Submitted blind to lab?

• Yes • No Comments:

The field-duplicate pairs DIL-05 / DIL-06 and KIN-03 / KIN-04 were submitted with this work order.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1-R_2)/((R_1+R_2)/2)$ x 100

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

• Yes O No

Comments:

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

The data quality and usability were not affected; see above.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

• Yes • No • Not Applicable

The field-blank sample *KIN-02* was submitted with this work order.

i. All results less than LOQ?

• Yes • No

Comments:

ii. If above LOQ, what samples are affected?

Comments:

None; PFAS compounds were not detected in the field-blank sample.

iii. Data quality or usability affected?

Comments:

The data quality and usability were not affected; see above.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

🔿 Yes 🛛 💿 No

Comments:

There were no additional flags/qualifiers required for this work order.

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

TestAmerica Job ID: 320-48588-1 Client Project/Site: King Salmon

For: Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

······ Links ······

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Authorized for release by: 3/28/2019 2:14:48 PM

David Alltucker, Project Manager I (916)374-4383 david.alltucker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	10
Isotope Dilution Summary	32
QC Sample Results	33
QC Association Summary	36
Lab Chronicle	38
Certification Summary	42
Method Summary	43
Sample Summary	44
Chain of Custody	45
Receipt Checklists	48

3

5

Qualifiers

LCMS

Lonio	
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
I	Value is EMPC (estimated maximum possible concentration).

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	4
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TFF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Pactor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 320-48588-1

Laboratory: TestAmerica Sacramento

Narrative

Job Narrative 320-48588-1

Receipt

The samples were received on 3/21/2019 9:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.9° C.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) PFAS Prep: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-284138.

Method(s) PFAS Prep: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-284173.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: AKNPW-112

Lab Sample ID: 320-48588-2

Lab Sample ID: 320-48588-3

Lab Sample ID: 320-48588-4

Lab Sample ID: 320-48588-5

Lab Sample ID: 320-48588-1

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	1.8	<u> </u>	2.0	0.92	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	6.4		2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.3		2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	12		2.0	0.75	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-012

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	1.7 J	2.0	0.92 ng/L	1	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	6.3	2.0	0.87 ng/L	1	WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.2	2.0	0.80 ng/L	1	WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	12	2.0	0.75 ng/L	1	WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-013

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	2.8	<u> </u>	2.0	0.92	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	8.2		2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	5.2		2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	4.1		2.0	0.75	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-008

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	2.4	<u> </u>	2.0	0.92	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.1		2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.1	J	2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	3.4		2.0	0.75	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-005

Analyte Perfluorobutanesulfonic acid (PFBS)	Result 1.1	Qualifier J	RL 2.0	MDL 0.92	Unit ng/L	Dil Fac	D	Method WS-LC-0025 At1	Prep Type Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.9	J	2.0	0.87	ng/L	1		WS-LC-0025	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.95	J	2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA

This Detection Summary does not include radiochemical test results.

5

Lab Sample ID: 320-48588-5

Lab Sample ID: 320-48588-6

Lab Sample ID: 320-48588-7

Lab Sample ID: 320-48588-8

Lab Sample ID: 320-48588-9

Lab Sample ID: 320-48588-10

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	1.5 J	2.0	0.75	ng/L	1	WS-LC-0025	Total/NA
						At1	

Client Sample ID: AKNPW-003

Client Sample ID: AKNPW-005 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	45		2.0	0.92	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	58		2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	13		2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	53		2.0	0.75	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-014

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	3.0		2.0	0.80	ng/L	1	WS-LC-0025	Total/NA
Perfluorooctanoic acid (PFOA)	1.4	J	2.0	0.75	ng/L	1	At1 WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-009

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	1.8	JI	2.0	0.92	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.9	J	2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.4	JI	2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	4.8		2.0	0.75	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-007

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	2.3		2.0	0.87	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.4		2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	2.4		2.0	0.75	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-001

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	3.5		2.0	0.92	ng/L	1	_	WS-LC-0025	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.5		2.0	0.87	ng/L	1		At1 WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.5	J	2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 320-48588-11

Lab Sample ID: 320-48588-12

Lab Sample ID: 320-48588-13

Lab Sample ID: 320-48588-14

Lab Sample ID: 320-48588-15

Lab Sample ID: 320-48588-16

Lab Sample ID: 320-48588-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Ргер Туре
Perfluorooctanoic acid (PFOA)	2.6	2.0	0.75 ng/L	1	WS-LC-0025	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.3	2.0	1.3 ng/L	1	At1 WS-LC-0025	Total/NA

Client Sample ID: AKNPW-422

Client Sample ID: AKNPW-001 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	1.0	J	2.0	0.92	ng/L	1	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.6	J	2.0	0.87	ng/L	1	WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	3.0		2.0	0.75	ng/L	1	WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-010

No Detections.

Client Sample ID: AKNPW-424

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	39		2.0	0.92	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	42		2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	7.2		2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	10		2.0	0.75	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorononanoic acid (PFNA)	1.7	J	2.0	0.65	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-204

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	31		2.0	0.92	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	110		2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	20		2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	100		2.0	0.75	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanesulfonic acid (PFOS)	10		2.0	1.3	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-015

No Detections.

Client Sample ID: AKNPW-304

This Detection Summary does not include radiochemical test results.

Client Sample ID: AKNPW-304 (Continued)

Lab Sample ID: 320-48588-16

Lab Sample ID: 320-48588-17

Lab Sample ID: 320-48588-18

Lab Sample ID: 320-48588-19

Lab Sample ID: 320-48588-20

Lab Sample ID: 320-48588-21

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	31		2.0	0.92	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	120		2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	21		2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	110		2.0	0.75	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanesulfonic acid (PFOS)	10		2.0	1.3	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-011

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	2.3		2.0	0.87	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.1	J	2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	4.9		2.0	0.75	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-016

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	1.6	<u>]</u>	2.0	0.92	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	4.1	I	2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.4	JI	2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorooctanoic acid (PFOA)	6.5		2.0	0.75	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-017

No Detections.

Client Sample ID: AKNPW-020

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	3.6		2.0	0.92	ng/L	1	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.6	JI	2.0	0.87	ng/L	1	WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-208

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	4.4		2.0	0.92	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	9.9		2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.2		2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA

This Detection Summary does not include radiochemical test results.

5

Client Sample ID: AKNPV	ent Sample ID: AKNPW-208 (Continued)							Lab Sample ID: 320-48588-21					
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type					
Perfluorooctanoic acid (PFOA)	21		2.0	0.75	ng/L	1	WS-LC-0025 At1	Total/NA					
Client Sample ID: AKNPW	V-006					Lab San	ple ID: 320	0-48588-22					
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type					
Perfluorooctanoic acid (PFOA)	1.7	J	2.0	0.75	ng/L	1	WS-LC-0025 At1	Total/NA					

This Detection Summary does not include radiochemical test results.

Date Collected: 03/14/19 16:11 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	orinated Al	kyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	1.8	J	2.0	0.92	ng/L		03/26/19 13:17	03/26/19 17:17	1
(PFBS)									
Perfluorohexanesulfonic acid	6.4		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 17:17	1
(PFHxS)									
Perfluoroheptanoic acid (PFHpA)	2.3		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 17:17	1
Perfluorooctanoic acid (PFOA)	12		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 17:17	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 17:17	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 17:17	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	107		25 - 150				03/26/19 13:17	03/26/19 17:17	1
13C4 PFHpA	117		25 - 150				03/26/19 13:17	03/26/19 17:17	1
13C4 PFOA	107		25 - 150				03/26/19 13:17	03/26/19 17:17	1
13C4 PFOS	111		25 - 150				03/26/19 13:17	03/26/19 17:17	1
13C5 PFNA	101		25 - 150				03/26/19 13:17	03/26/19 17:17	1
13C3 PFBS	106		25 - 150				03/26/19 13:17	03/26/19 17:17	1

Lab Sample ID: 320-48588-1 Matrix: Water

TestAmerica Job ID: 320-48588-1

Date Collected: 03/14/19 16:21 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	orinated Al	kyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	1.7	J	2.0	0.92	ng/L		03/26/19 13:17	03/26/19 17:35	1
(PFBS)									
Perfluorohexanesulfonic acid (PFHxS)	6.3		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 17:35	1
Perfluoroheptanoic acid (PFHpA)	2.2		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 17:35	1
Perfluorooctanoic acid (PFOA)	12		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 17:35	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 17:35	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 17:35	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	111		25 - 150				03/26/19 13:17	03/26/19 17:35	1
13C4 PFHpA	113		25 - 150				03/26/19 13:17	03/26/19 17:35	1
13C4 PFOA	110		25 - 150				03/26/19 13:17	03/26/19 17:35	1
13C4 PFOS	108		25 - 150				03/26/19 13:17	03/26/19 17:35	1
13C5 PFNA	111		25 - 150				03/26/19 13:17	03/26/19 17:35	1
13C3 PFBS	105		25 - 150				03/26/19 13:17	03/26/19 17:35	1

TestAmerica Job ID: 320-48588-1

Date Collected: 03/15/19 08:31 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	orinated A	kyl Subst	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	2.8	I	2.0	0.92	ng/L		03/26/19 13:17	03/26/19 17:54	1
(PFBS)									
Perfluorohexanesulfonic acid	8.2		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 17:54	1
(PFHxS)									
Perfluoroheptanoic acid (PFHpA)	5.2		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 17:54	1
Perfluorooctanoic acid (PFOA)	4.1		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 17:54	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 17:54	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 17:54	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	108		25 - 150				03/26/19 13:17	03/26/19 17:54	1
13C4 PFHpA	121		25 - 150				03/26/19 13:17	03/26/19 17:54	1
13C4 PFOA	113		25 - 150				03/26/19 13:17	03/26/19 17:54	1
13C4 PFOS	113		25 - 150				03/26/19 13:17	03/26/19 17:54	1
13C5 PFNA	106		25 - 150				03/26/19 13:17	03/26/19 17:54	1
13C3 PFBS	109		25 - 150				03/26/19 13:17	03/26/19 17:54	1

Matrix: Water

TestAmerica Job ID: 320-48588-1

Date Collected: 03/15/19 09:55 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	orinated Al	kyl Subst	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid (PFBS)	2.4	I	2.0	0.92	ng/L		03/26/19 13:17	03/26/19 18:12	1
Perfluorohexanesulfonic acid (PFHxS)	2.1		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 18:12	1
Perfluoroheptanoic acid (PFHpA)	1.1	J	2.0	0.80	ng/L		03/26/19 13:17	03/26/19 18:12	1
Perfluorooctanoic acid (PFOA)	3.4		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 18:12	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 18:12	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 18:12	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	114		25 - 150				03/26/19 13:17	03/26/19 18:12	1
13C4 PFHpA	116		25 - 150				03/26/19 13:17	03/26/19 18:12	1
13C4 PFOA	114		25 - 150				03/26/19 13:17	03/26/19 18:12	1
13C4 PFOS	110		25 - 150				03/26/19 13:17	03/26/19 18:12	1
13C5 PFNA	111		25 - 150				03/26/19 13:17	03/26/19 18:12	1
13C3 PFBS	111		25 - 150				03/26/19 13:17	03/26/19 18:12	1

Lab Sample ID: 320-48588-4 Matrix: Water

Date Collected: 03/15/19 10:04 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	orinated A	lkyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid (PFBS)	1.1	J	2.0	0.92	ng/L		03/26/19 13:17	03/26/19 18:31	1
Perfluorohexanesulfonic acid (PFHxS)	1.9	J	2.0	0.87	ng/L		03/26/19 13:17	03/26/19 18:31	1
Perfluoroheptanoic acid (PFHpA)	0.95	J	2.0	0.80	ng/L		03/26/19 13:17	03/26/19 18:31	1
Perfluorooctanoic acid (PFOA)	1.5	J	2.0	0.75	ng/L		03/26/19 13:17	03/26/19 18:31	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 18:31	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 18:31	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	113		25 - 150				03/26/19 13:17	03/26/19 18:31	1
13C4 PFHpA	116		25 - 150				03/26/19 13:17	03/26/19 18:31	1
13C4 PFOA	108		25 - 150				03/26/19 13:17	03/26/19 18:31	1
13C4 PFOS	109		25 - 150				03/26/19 13:17	03/26/19 18:31	1
13C5 PFNA	113		25 - 150				03/26/19 13:17	03/26/19 18:31	1
13C3 PFBS	108		25 - 150				03/26/19 13:17	03/26/19 18:31	1

TestAmerica Job ID: 320-48588-1

Lab Sample ID: 320-48588-5

Matrix: Water

Date Collected: 03/15/19 10:38 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	orinated A	kyl Subst	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	45		2.0	0.92	ng/L		03/26/19 13:17	03/26/19 18:49	1
(PFBS)									
Perfluorohexanesulfonic acid	58		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 18:49	1
(PFHxS)									
Perfluoroheptanoic acid (PFHpA)	13		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 18:49	1
Perfluorooctanoic acid (PFOA)	53		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 18:49	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 18:49	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 18:49	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	111		25 - 150				03/26/19 13:17	03/26/19 18:49	1
13C4 PFHpA	112		25 - 150				03/26/19 13:17	03/26/19 18:49	1
13C4 PFOA	110		25 - 150				03/26/19 13:17	03/26/19 18:49	1
13C4 PFOS	105		25 - 150				03/26/19 13:17	03/26/19 18:49	1
13C5 PFNA	106		25 - 150				03/26/19 13:17	03/26/19 18:49	1
13C3 PFBS	105		25 - 150				03/26/19 13:17	03/26/19 18:49	1

Lab Sample ID: 320-48588-6 Matrix: Water

Date Collected: 03/15/19 10:47 Date Received: 03/21/19 09:55

Nethod: WS-LC-0025 At1 - Fluorinated Alkyl Substances											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		03/26/19 13:17	03/26/19 19:08	1		
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 19:08	1		
Perfluoroheptanoic acid (PFHpA)	3.0		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 19:08	1		
Perfluorooctanoic acid (PFOA)	1.4	J	2.0	0.75	ng/L		03/26/19 13:17	03/26/19 19:08	1		
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 19:08	1		
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 19:08	1		
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
18O2 PFHxS	113		25 - 150				03/26/19 13:17	03/26/19 19:08	1		
13C4 PFHpA	114		25 - 150				03/26/19 13:17	03/26/19 19:08	1		
13C4 PFOA	125		25 - 150				03/26/19 13:17	03/26/19 19:08	1		
13C4 PFOS	118		25 - 150				03/26/19 13:17	03/26/19 19:08	1		
13C5 PFNA	110		25 - 150				03/26/19 13:17	03/26/19 19:08	1		
13C3 PFBS	112		25 - 150				03/26/19 13:17	03/26/19 19:08	1		

TestAmerica Job ID: 320-48588-1

Lab Sample ID: 320-48588-7 Matrix: Water

Date Collected: 03/15/19 11:35 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	orinated A	kyl Subst	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	1.8	JI	2.0	0.92	ng/L		03/26/19 13:17	03/26/19 19:45	1
(PFBS)									
Perfluorohexanesulfonic acid	1.9	J	2.0	0.87	ng/L		03/26/19 13:17	03/26/19 19:45	1
(PFHxS)									
Perfluoroheptanoic acid (PFHpA)	1.4	JI	2.0	0.80	ng/L		03/26/19 13:17	03/26/19 19:45	1
Perfluorooctanoic acid (PFOA)	4.8		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 19:45	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 19:45	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 19:45	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	107		25 - 150				03/26/19 13:17	03/26/19 19:45	1
13C4 PFHpA	107		25 - 150				03/26/19 13:17	03/26/19 19:45	1
13C4 PFOA	109		25 - 150				03/26/19 13:17	03/26/19 19:45	1
13C4 PFOS	110		25 - 150				03/26/19 13:17	03/26/19 19:45	1
13C5 PFNA	99		25 - 150				03/26/19 13:17	03/26/19 19:45	1
13C3 PFBS	102		25 - 150				03/26/19 13:17	03/26/19 19:45	1

TestAmerica Job ID: 320-48588-1

Lab Sample ID: 320-48588-8

Matrix: Water

Client Sample ID: AKNPW-007 Date Collected: 03/15/19 12:40

Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		03/26/19 13:17	03/26/19 20:03	1		
Perfluorohexanesulfonic acid (PFHxS)	2.3	I.	2.0	0.87	ng/L		03/26/19 13:17	03/26/19 20:03	1		
Perfluoroheptanoic acid (PFHpA)	3.4		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 20:03	1		
Perfluorooctanoic acid (PFOA)	2.4		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 20:03	1		
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 20:03	1		
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 20:03	1		
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
18O2 PFHxS	110		25 - 150				03/26/19 13:17	03/26/19 20:03	1		
13C4 PFHpA	111		05 450								
	117		25 - 150				03/26/19 13:17	03/26/19 20:03	1		
13C4 PFOA	109		25 - 150 25 - 150				03/26/19 13:17 03/26/19 13:17	03/26/19 20:03 03/26/19 20:03	1 1		
13C4 PFOA 13C4 PFOS	109 110		25 - 150 25 - 150 25 - 150				03/26/19 13:17 03/26/19 13:17 03/26/19 13:17	03/26/19 20:03 03/26/19 20:03 03/26/19 20:03	1 1 1		
13C4 PFOA 13C4 PFOS 13C5 PFNA	109 110 105		25 - 150 25 - 150 25 - 150 25 - 150				03/26/19 13:17 03/26/19 13:17 03/26/19 13:17 03/26/19 13:17	03/26/19 20:03 03/26/19 20:03 03/26/19 20:03 03/26/19 20:03	1 1 1 1		

TestAmerica Job ID: 320-48588-1

Lab Sample ID: 320-48588-9 Matrix: Water

Date Collected: 03/15/19 15:01 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	uorinated A	lkyl Subst	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid (PFBS)	3.5		2.0	0.92	ng/L		03/26/19 13:17	03/26/19 20:22	1
Perfluorohexanesulfonic acid (PFHxS)	2.5		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 20:22	1
Perfluoroheptanoic acid (PFHpA)	1.5	J	2.0	0.80	ng/L		03/26/19 13:17	03/26/19 20:22	1
Perfluorooctanoic acid (PFOA)	2.6		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 20:22	1
Perfluorooctanesulfonic acid (PFOS)	2.3		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 20:22	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 20:22	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	114		25 - 150				03/26/19 13:17	03/26/19 20:22	1
13C4 PFHpA	119		25 - 150				03/26/19 13:17	03/26/19 20:22	1
13C4 PFOA	115		25 - 150				03/26/19 13:17	03/26/19 20:22	1
13C4 PFOS	117		25 - 150				03/26/19 13:17	03/26/19 20:22	1
13C5 PFNA	108		25 - 150				03/26/19 13:17	03/26/19 20:22	1
13C3 PFBS	107		25 - 150				03/26/19 13:17	03/26/19 20:22	1

Lab Sample ID: 320-48588-10 Matrix: Water

Date Collected: 03/15/19 15:33 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	uorinated Al	kyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	1.0	J	2.0	0.92	ng/L		03/26/19 13:17	03/26/19 20:40	1
(PFBS)									
Perfluorohexanesulfonic acid	1.6	J	2.0	0.87	ng/L		03/26/19 13:17	03/26/19 20:40	1
(PFHxS)									
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 20:40	1
Perfluorooctanoic acid (PFOA)	3.0		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 20:40	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 20:40	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 20:40	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	113		25 - 150				03/26/19 13:17	03/26/19 20:40	1
13C4 PFHpA	118		25 - 150				03/26/19 13:17	03/26/19 20:40	1
13C4 PFOA	113		25 - 150				03/26/19 13:17	03/26/19 20:40	1
13C4 PFOS	111		25 - 150				03/26/19 13:17	03/26/19 20:40	1
13C5 PFNA	112		25 - 150				03/26/19 13:17	03/26/19 20:40	1
13C3 PFBS	109		25 - 150				03/26/19 13:17	03/26/19 20:40	1

Lab Sample ID: 320-48588-11 Matrix: Water

Client Sample ID: AKNPW-010 Date Collected: 03/15/19 16:00

Date Received: 03/21/19 09:55

orinated Al	kyl Substa	ances						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		2.0	0.92	ng/L		03/26/19 13:17	03/26/19 20:58	1
ND		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 20:58	1
ND		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 20:58	1
ND		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 20:58	1
ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 20:58	1
ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 20:58	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
110		25 - 150				03/26/19 13:17	03/26/19 20:58	1
119		25 - 150				03/26/19 13:17	03/26/19 20:58	1
111		25 - 150				03/26/19 13:17	03/26/19 20:58	1
110		25 - 150				03/26/19 13:17	03/26/19 20:58	1
113		25 - 150				03/26/19 13:17	03/26/19 20:58	1
106		25 - 150				03/26/19 13:17	03/26/19 20:58	1
	orinated Al Result ND ND ND ND ND %Recovery 110 119 111 110 113 106	orinated Alkyl Substa Result Qualifier ND ND ND ND ND %Recovery Qualifier 110 119 111 110 113 106	Result Qualifier RL ND 2.0 MD 2.0 ND 2.0 MD 2.0 MD 2.0 MD 2.0 MD 2.0 MD 2.0 %Recovery Qualifier Limits 110 25 - 150 111 25 - 150 113 25 - 150 106 25 - 150	Result Qualifier RL MDL ND 2.0 0.92 ND 2.0 0.87 ND 2.0 0.87 ND 2.0 0.87 ND 2.0 0.75 ND 2.0 0.75 ND 2.0 0.65 %Recovery Qualifier Limits 110 25 - 150 111 111 25 - 150 113 113 25 - 150 113 106 25 - 150 150	orinated Alkyl Substances Result Qualifier RL MDL Unit ND 2.0 0.92 ng/L ND 2.0 0.87 ng/L ND 2.0 0.87 ng/L ND 2.0 0.75 ng/L ND 2.0 0.75 ng/L ND 2.0 0.75 ng/L ND 2.0 0.75 ng/L ND 2.0 0.65 ng/L ND 2.0 0.65 ng/L ND 2.0 0.65 ng/L ND 2.0 0.65 ng/L MD 2.0 0.65 ng/L MD 2.0 0.65 ng/L MD 2.0 0.65 ng/L MD 25.150 111 25.150 113 25.150 106 25.150	orinated Alkyl Substances Result Qualifier RL MDL Unit D ND 2.0 0.92 ng/L D ND 2.0 0.87 ng/L D ND 2.0 0.80 ng/L D ND 2.0 0.75 ng/L D ND 2.0 0.75 ng/L D ND 2.0 0.65 ng/L MD 25 - 150 111 $25 - 150$ 110 25 - 150 113 $25 - 150$ 106 $25 - 150$ 106 $25 - 150$	orinated Alkyl SubstancesResultQualifierRLMDLUnitDPreparedND 2.0 0.92 ng/L $03/26/19$ 13:17ND 2.0 0.87 ng/L $03/26/19$ 13:17ND 2.0 0.80 ng/L $03/26/19$ 13:17ND 2.0 0.80 ng/L $03/26/19$ 13:17ND 2.0 0.75 ng/L $03/26/19$ 13:17ND 2.0 0.75 ng/L $03/26/19$ 13:17ND 2.0 1.3 ng/L $03/26/19$ 13:17ND 2.0 0.65 ng/L $03/26/19$ 13:17110 $25 \cdot 150$ $03/26/19$ 13:17 $03/26/19$ 13:17113 $25 \cdot 150$ $03/26/19$ 13:17 $03/26/19$ 13:17106 $25 \cdot 150$ $03/26/19$ 13:17	Result Qualifier RL MDL Unit P Prepared Analyzed ND 2.0 0.92 ng/L 03/26/19 13:17 03/26/19 20:58 ND 2.0 0.87 ng/L 03/26/19 13:17 03/26/19 20:58 ND 2.0 0.87 ng/L 03/26/19 13:17 03/26/19 20:58 ND 2.0 0.75 ng/L 03/26/19 13:17 03/26/19 20:58 ND 2.0 0.75 ng/L 03/26/19 13:17 03/26/19 20:58 ND 2.0 0.75 ng/L 03/26/19 13:17 03/26/19 20:58 ND 2.0 1.3 ng/L 03/26/19 13:17 03/26/19 20:58 ND 2.0 0.65 ng/L 03/26/19 13:17 03/26/19 20:58 ND 2.0 0.65 ng/L 03/26/19 13:17 03/26/19 20:58 MD 2.0 0.65 ng/L 03/26/19 13:17 03/26/19 20:58 110 25 - 150 03/26/19 13:17 03/26/19 20:58 03/26/19 13:17 <

TestAmerica Job ID: 320-48588-1

Date Collected: 03/15/19 16:56 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	orinated A	lkyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid (PFBS)	39		2.0	0.92	ng/L		03/26/19 13:17	03/26/19 21:17	1
Perfluorohexanesulfonic acid (PFHxS)	42		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 21:17	1
Perfluoroheptanoic acid (PFHpA)	7.2		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 21:17	1
Perfluorooctanoic acid (PFOA)	10		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 21:17	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 21:17	1
Perfluorononanoic acid (PFNA)	1.7	J	2.0	0.65	ng/L		03/26/19 13:17	03/26/19 21:17	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	111		25 - 150				03/26/19 13:17	03/26/19 21:17	1
13C4 PFHpA	117		25 - 150				03/26/19 13:17	03/26/19 21:17	1
13C4 PFOA	114		25 - 150				03/26/19 13:17	03/26/19 21:17	1
13C4 PFOS	113		25 - 150				03/26/19 13:17	03/26/19 21:17	1
13C5 PFNA	113		25 - 150				03/26/19 13:17	03/26/19 21:17	1
13C3 PFBS	109		25 - 150				03/26/19 13:17	03/26/19 21:17	1

TestAmerica Job ID: 320-48588-1

Matrix: Water

Date Collected: 03/15/19 17:14 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	Jorinated A	lkyl Subst	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	31		2.0	0.92	ng/L		03/26/19 13:17	03/26/19 21:35	1
(PFBS)									
Perfluorohexanesulfonic acid (PFHxS)	110		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 21:35	1
Perfluoroheptanoic acid (PFHpA)	20		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 21:35	1
Perfluorooctanoic acid (PFOA)	100		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 21:35	1
Perfluorooctanesulfonic acid (PFOS)	10		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 21:35	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 21:35	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	112		25 - 150				03/26/19 13:17	03/26/19 21:35	1
13C4 PFHpA	121		25 - 150				03/26/19 13:17	03/26/19 21:35	1
13C4 PFOA	122		25 - 150				03/26/19 13:17	03/26/19 21:35	1
13C4 PFOS	111		25 - 150				03/26/19 13:17	03/26/19 21:35	1
13C5 PFNA	117		25 - 150				03/26/19 13:17	03/26/19 21:35	1
13C3 PFBS	108		25 - 150				03/26/19 13:17	03/26/19 21:35	1

TestAmerica Job ID: 320-48588-1

Matrix: Water

Lab Sample ID: 320-48588-14
Client Sample ID: AKNPW-015 Date Collected: 03/15/19 17:13

Date Received: 03/21/19 09:55

lethod: WS-LC-0025 At1 - Fluorinated Alkyl Substances										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		03/26/19 13:17	03/26/19 21:54	1	
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 21:54	1	
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 21:54	1	
Perfluorooctanoic acid (PFOA)	ND		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 21:54	1	
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 21:54	1	
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 21:54	1	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
18O2 PFHxS	106		25 - 150				03/26/19 13:17	03/26/19 21:54	1	
13C4 PFHpA	107		25 - 150				03/26/19 13:17	03/26/19 21:54	1	
13C4 PFOA	109		25 - 150				03/26/19 13:17	03/26/19 21:54	1	
13C4 PFOS	108		25 - 150				03/26/19 13:17	03/26/19 21:54	1	
13C5 PFNA	105		25 - 150				03/26/19 13:17	03/26/19 21:54	1	
13C3 PFBS	98		25 - 150				03/26/19 13:17	03/26/19 21:54	1	

Lab Sample ID: 320-48588-15 Matrix: Water

Date Collected: 03/15/19 17:04 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	uorinated A	kyl Subst	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	31		2.0	0.92	ng/L		03/26/19 13:17	03/26/19 22:12	1
(PFBS)									
Perfluorohexanesulfonic acid	120		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 22:12	1
(PFHxS)									
Perfluoroheptanoic acid (PFHpA)	21		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 22:12	1
Perfluorooctanoic acid (PFOA)	110		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 22:12	1
Perfluorooctanesulfonic acid	10		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 22:12	1
(PFOS)									
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 22:12	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	110		25 - 150				03/26/19 13:17	03/26/19 22:12	1
13C4 PFHpA	117		25 - 150				03/26/19 13:17	03/26/19 22:12	1
13C4 PFOA	116		25 - 150				03/26/19 13:17	03/26/19 22:12	1
13C4 PFOS	116		25 - 150				03/26/19 13:17	03/26/19 22:12	1
13C5 PFNA	124		25 - 150				03/26/19 13:17	03/26/19 22:12	1
13C3 PFBS	110		25 - 150				03/26/19 13:17	03/26/19 22:12	1

Lab Sample ID: 320-48588-16 Matrix: Water

Date Collected: 03/15/19 18:11 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		03/26/19 13:17	03/26/19 22:31	1
Perfluorohexanesulfonic acid (PFHxS)	2.3		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 22:31	1
Perfluoroheptanoic acid (PFHpA)	1.1	J	2.0	0.80	ng/L		03/26/19 13:17	03/26/19 22:31	1
Perfluorooctanoic acid (PFOA)	4.9		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 22:31	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 22:31	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 22:31	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	104		25 - 150				03/26/19 13:17	03/26/19 22:31	1
13C4 PFHpA	115		25 - 150				03/26/19 13:17	03/26/19 22:31	1
13C4 PFOA	107		25 - 150				03/26/19 13:17	03/26/19 22:31	1
13C4 PFOS	101		25 - 150				03/26/19 13:17	03/26/19 22:31	1
13C5 PFNA	111		25 - 150				03/26/19 13:17	03/26/19 22:31	1
13C3 PFBS	101		25 - 150				03/26/19 13:17	03/26/19 22:31	1

TestAmerica Job ID: 320-48588-1

Lab Sample ID: 320-48588-17 Matrix: Water

Date Collected: 03/16/19 12:37 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	orinated A	kyl Subst	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	1.6	JI	2.0	0.92	ng/L		03/26/19 14:37	03/27/19 02:49	1
(PFBS)									
Perfluorohexanesulfonic acid	4.1	1	2.0	0.87	ng/L		03/26/19 14:37	03/27/19 02:49	1
Perfluoroheptanoic acid (PFHpA)	1.4	JI	2.0	0.80	ng/L		03/26/19 14:37	03/27/19 02:49	1
Perfluorooctanoic acid (PFOA)	6.5		2.0	0.75	ng/L		03/26/19 14:37	03/27/19 02:49	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 14:37	03/27/19 02:49	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 14:37	03/27/19 02:49	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	113		25 - 150				03/26/19 14:37	03/27/19 02:49	1
13C4 PFHpA	119		25 - 150				03/26/19 14:37	03/27/19 02:49	1
13C4 PFOA	109		25 - 150				03/26/19 14:37	03/27/19 02:49	1
13C4 PFOS	116		25 - 150				03/26/19 14:37	03/27/19 02:49	1
13C5 PFNA	108		25 - 150				03/26/19 14:37	03/27/19 02:49	1
13C3 PFBS	108		25 - 150				03/26/19 14:37	03/27/19 02:49	1

TestAmerica Job ID: 320-48588-1

Matrix: Water

Lab Sample ID: 320-48588-18

RL

2.0

2.0

2.0

2.0

2.0

2.0

Limits

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

MDL Unit

0.92 ng/L

0.87 ng/L

0.80 ng/L

0.75 ng/L

1.3 ng/L

0.65 ng/L

D

Prepared

Prepared

Client Sample ID: AKNPW-017 Date Collected: 03/16/19 15:19

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances

Result Qualifier

ND

ND

ND

ND

ND

ND

112

109

109

110

105

105

%Recovery Qualifier

Perfluorobutanesulfonic acid (PFBS)

Perfluorooctanesulfonic acid (PFOS)

Perfluoroheptanoic acid (PFHpA)

Perfluorooctanoic acid (PFOA)

Perfluorononanoic acid (PFNA)

Isotope Dilution

1802 PFHxS

13C4 PFHpA

13C4 PFOA

13C4 PFOS

13C5 PFNA

13C3 PFBS

Perfluorohexanesulfonic acid (PFHxS)

Analyte

Analyzed

Analyzed

Lab Sample ID: 320-48588-19 Matrix: Water

03/26/19 14:37 03/27/19 03:07

03/26/19 14:37 03/27/19 03:07

03/26/19 14:37 03/27/19 03:07

03/26/19 14:37 03/27/19 03:07

03/26/19 14:37 03/27/19 03:07

03/26/19 14:37 03/27/19 03:07

03/26/19 14:37 03/27/19 03:07

03/26/19 14:37 03/27/19 03:07

03/26/19 14:37 03/27/19 03:07

03/26/19 14:37 03/27/19 03:07

03/26/19 14:37 03/27/19 03:07

03/26/19 14:37 03/27/19 03:07

water	
Dil Fac	5
1 1	6
1	7
1 1	8
Dil Fac	9
1	1(
1 1	
	13

TestAmerica Sacramento

Date Collected: 03/18/19 17:43 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	uorinated A	kyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	3.6		2.0	0.92	ng/L		03/26/19 14:37	03/27/19 03:26	1
(PFBS)									
Perfluorohexanesulfonic acid	1.6	JI	2.0	0.87	ng/L		03/26/19 14:37	03/27/19 03:26	1
(PFHxS)									
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		03/26/19 14:37	03/27/19 03:26	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.75	ng/L		03/26/19 14:37	03/27/19 03:26	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 14:37	03/27/19 03:26	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 14:37	03/27/19 03:26	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	111		25 - 150				03/26/19 14:37	03/27/19 03:26	1
13C4 PFHpA	116		25 - 150				03/26/19 14:37	03/27/19 03:26	1
13C4 PFOA	110		25 - 150				03/26/19 14:37	03/27/19 03:26	1
13C4 PFOS	112		25 - 150				03/26/19 14:37	03/27/19 03:26	1
13C5 PFNA	111		25 - 150				03/26/19 14:37	03/27/19 03:26	1
13C3 PFBS	103		25 - 150				03/26/19 14:37	03/27/19 03:26	1

Lab Sample ID: 320-48588-20 Matrix: Water

Date Collected: 03/18/19 11:26 Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	orinated A	lkyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid (PFBS)	4.4		2.0	0.92	ng/L		03/26/19 14:37	03/27/19 03:44	1
Perfluorohexanesulfonic acid (PFHxS)	9.9		2.0	0.87	ng/L		03/26/19 14:37	03/27/19 03:44	1
Perfluoroheptanoic acid (PFHpA)	3.2		2.0	0.80	ng/L		03/26/19 14:37	03/27/19 03:44	1
Perfluorooctanoic acid (PFOA)	21		2.0	0.75	ng/L		03/26/19 14:37	03/27/19 03:44	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 14:37	03/27/19 03:44	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 14:37	03/27/19 03:44	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	100		25 - 150				03/26/19 14:37	03/27/19 03:44	1
13C4 PFHpA	114		25 - 150				03/26/19 14:37	03/27/19 03:44	1
13C4 PFOA	108		25 - 150				03/26/19 14:37	03/27/19 03:44	1
13C4 PFOS	103		25 - 150				03/26/19 14:37	03/27/19 03:44	1
13C5 PFNA	100		25 - 150				03/26/19 14:37	03/27/19 03:44	1
13C3 PFBS	102		25 - 150				03/26/19 14:37	03/27/19 03:44	1

TestAmerica Job ID: 320-48588-1

TestAmerica Sacramento

Client Sample ID: AKNPW-006 Date Collected: 03/18/19 12:32

Date Received: 03/21/19 09:55

Method: WS-LC-0025 At1 - Flu	orinated A	kyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		03/26/19 14:37	03/27/19 04:03	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.87	ng/L		03/26/19 14:37	03/27/19 04:03	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		03/26/19 14:37	03/27/19 04:03	1
Perfluorooctanoic acid (PFOA)	1.7	J	2.0	0.75	ng/L		03/26/19 14:37	03/27/19 04:03	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 14:37	03/27/19 04:03	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 14:37	03/27/19 04:03	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	112		25 - 150				03/26/19 14:37	03/27/19 04:03	1
13C4 PFHpA	117		25 - 150				03/26/19 14:37	03/27/19 04:03	1
13C4 PFOA	112		25 - 150				03/26/19 14:37	03/27/19 04:03	1
13C4 PFOS	113		25 - 150				03/26/19 14:37	03/27/19 04:03	1
13C5 PFNA	111		25 - 150				03/26/19 14:37	03/27/19 04:03	1
13C3 PFBS	105		25 - 150				03/26/19 14:37	03/27/19 04:03	1

Prep Type: Total/NA

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances

Matrix: Water

-		Percent Isotope Dilution Recovery (Acceptance Limits)							
		PFHxS	PFHpA	PFOA	PFOS	PFNA	3C3-PFB		
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)		
320-48588-1	AKNPW-112	107	117	107	111	101	106		
320-48588-2	AKNPW-012	111	113	110	108	111	105		
320-48588-3	AKNPW-013	108	121	113	113	106	109		
320-48588-4	AKNPW-008	114	116	114	110	111	111		
320-48588-5	AKNPW-005	113	116	108	109	113	108		
320-48588-6	AKNPW-003	111	112	110	105	106	105		
320-48588-7	AKNPW-014	113	114	125	118	110	112		
320-48588-8	AKNPW-009	107	107	109	110	99	102		
320-48588-9	AKNPW-007	110	114	109	110	105	107		
320-48588-10	AKNPW-001	114	119	115	117	108	107		
320-48588-11	AKNPW-422	113	118	113	111	112	109		
320-48588-12	AKNPW-010	110	119	111	110	113	106		
320-48588-13	AKNPW-424	111	117	114	113	113	109		
320-48588-14	AKNPW-204	112	121	122	111	117	108		
320-48588-15	AKNPW-015	106	107	109	108	105	98		
320-48588-16	AKNPW-304	110	117	116	116	124	110		
320-48588-17	AKNPW-011	104	115	107	101	111	101		
320-48588-18	AKNPW-016	113	119	109	116	108	108		
320-48588-19	AKNPW-017	112	109	109	110	105	105		
320-48588-20	AKNPW-020	111	116	110	112	111	103		
320-48588-21	AKNPW-208	100	114	108	103	100	102		
320-48588-22	AKNPW-006	112	117	112	113	111	105		
LCS 320-284138/2-A	Lab Control Sample	98	100	98	100	98	97		
LCS 320-284173/2-A	Lab Control Sample	106	110	108	107	98	103		
LCSD 320-284138/3-A	Lab Control Sample Dup	110	113	101	106	102	103		
LCSD 320-284173/3-A	Lab Control Sample Dup	106	113	107	112	104	108		
MB 320-284138/1-A	Method Blank	102	109	105	98	96	95		
MB 320-284173/1-A	Method Blank	108	117	115	113	106	108		

Surrogate Legend

PFHxS = 1802 PFHxS PFHpA = 13C4 PFHpA PFOA = 13C4 PFOA PFOS = 13C4 PFOS PFNA = 13C5 PFNA 13C3-PFBS = 13C3 PFBS Lab Sample ID: MB 320-284138/1-A

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank 5

8

Method: WS-LC-0025 At1	- Fluorinated	Alkyl Substances

Matrix: Water								Prep Type: To	otal/NA
Analysis Batch: 284202								Prep Batch:	284138
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		03/26/19 13:17	03/26/19 16:22	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.87	ng/L		03/26/19 13:17	03/26/19 16:22	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		03/26/19 13:17	03/26/19 16:22	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.75	ng/L		03/26/19 13:17	03/26/19 16:22	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 13:17	03/26/19 16:22	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 13:17	03/26/19 16:22	1
	MB	МВ							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	102		25 - 150				03/26/19 13:17	03/26/19 16:22	1
13C4 PFHpA	109		25 - 150				03/26/19 13:17	03/26/19 16:22	1
13C4 PFOA	105		25 - 150				03/26/19 13:17	03/26/19 16:22	1
13C4 PFOS	98		25 - 150				03/26/19 13:17	03/26/19 16:22	1
13C5 PFNA	96		25 - 150				03/26/19 13:17	03/26/19 16:22	1
13C3 PFBS	95		25 - 150				03/26/19 13:17	03/26/19 16:22	1
—									

Lab Sample ID: LCS 320-284138/2-A **Matrix: Water** Analysis Batch: 28/202

Matrix: Water Analysis Batch: 284202								÷	Prep Type: Total/NA Prep Batch: 284138
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanesulfonic acid (PFBS)			17.7	16.2		ng/L		92	72 - 151
Perfluorohexanesulfonic acid (PFHxS)			18.2	17.6		ng/L		97	73 - 157
Perfluoroheptanoic acid (PFHpA)			20.0	19.2		ng/L		96	71 - 138
Perfluorooctanoic acid (PFOA)			20.0	19.8		ng/L		99	70 ₋ 140
Perfluorooctanesulfonic acid (PFOS)			18.6	17.5		ng/L		94	69 - 144
Perfluorononanoic acid (PFNA)			20.0	19.3		ng/L		97	73 - 147
	LCS	LCS							
Isotope Dilution	%Recovery	Qualifier	Limits						
18O2 PFHxS	98		25 - 150						

25 - 150 25 - 150

25 - 150

25 - 150

25 - 150

13C3 PFBS	97
Lab Sample ID: LCSD 320-28 Matrix: Water	84138/3-A

100

98

100

98

13C4 PFHpA

13C4 PFOA

13C4 PFOS

13C5 PFNA

Analysis Batch: 284202							Prep Ba	itch: 28	34138
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanesulfonic acid	17.7	16.9		ng/L		96	72 - 151	4	30
(PFBS)									
Perfluorohexanesulfonic acid	18.2	15.9		ng/L		87	73 - 157	10	30
(PFHxS)									
Perfluoroheptanoic acid (PFHpA)	20.0	16.7		ng/L		84	71 - 138	13	30
Perfluorooctanoic acid (PFOA)	20.0	18.9		ng/L		95	70 - 140	4	30

TestAmerica Sacramento

Prep Type: Total/NA

Page 33 of 48

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Dren Betch, 204472

Prep Type: Total/NA

Prep Batch: 284173

5

8

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320 Matrix: Water)-284138/3-A				C	Client Sa	ample	ID: Lat	Control Prep Ty	Sample oe: Tot	e Dup al/NA
Analysis Batch: 284202									Prep Ba	atch: 28	34138
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorooctanesulfonic acid			18.6	17.2		ng/L		93	69 - 144	2	30
Perfluorononanoic acid (PFNA)			20.0	19.1		ng/L		95	73 - 147	1	30
	LCSD	LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
18O2 PFHxS	110		25 - 150								
13C4 PFHpA	113		25 - 150								
13C4 PFOA	101		25 - 150								
13C4 PFOS	106		25 - 150								
13C5 PFNA	102		25 - 150								
13C3 PFBS	103		25 - 150								

Lab Sample ID: MB 320-284173/1-A Matrix: Water Analysis Batch: 284227

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		03/26/19 14:37	03/27/19 01:54	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.87	ng/L		03/26/19 14:37	03/27/19 01:54	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		03/26/19 14:37	03/27/19 01:54	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.75	ng/L		03/26/19 14:37	03/27/19 01:54	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		03/26/19 14:37	03/27/19 01:54	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		03/26/19 14:37	03/27/19 01:54	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	108		25 - 150				03/26/19 14:37	03/27/19 01:54	1
13C4 PFHpA	117		25 - 150				03/26/19 14:37	03/27/19 01:54	1
13C4 PFOA	115		25 - 150				03/26/19 14:37	03/27/19 01:54	1
13C4 PFOS	113		25 - 150				03/26/19 14:37	03/27/19 01:54	1
13C5 PFNA	106		25 - 150				03/26/19 14:37	03/27/19 01:54	1
13C3 PFBS	108		25 - 150				03/26/19 14:37	03/27/19 01:54	1

Lab Sample ID: LCS 320-284173/2-A Matrix: Water Analysis Batch: 284227

Analysis Batch. 204227			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanesulfonic acid			17.7	17.3		ng/L		98	72 - 151
(PFBS)									
Perfluorohexanesulfonic acid			18.2	17.2		ng/L		95	73 - 157
(PFHxS)									
Perfluoroheptanoic acid (PFHpA)			20.0	18.1		ng/L		90	71 ₋ 138
Perfluorooctanoic acid (PFOA)			20.0	19.6		ng/L		98	70 - 140
Perfluorooctanesulfonic acid (PFOS)			18.6	18.1		ng/L		97	69 - 144
Perfluorononanoic acid (PFNA)			20.0	20.3		ng/L		101	73 ₋ 147
	LCS	LCS							
Isotope Dilution	%Recovery	Qualifier	Limits						
18O2 PFHxS	106		25 - 150						
13C4 PFHpA	110		25 - 150						

TestAmerica Sacramento

		Q	C Sampl	e Resi	ults							
Client: Shannon & Wilson, In Project/Site: King Salmon	С						Tes	stAmerio	a Job ID:	320-48	588-1	
Method: WS-LC-0025 A	At1 - Fluor	inated A	Ikyl Subst	tances	(Contin	nued)						
Lab Sample ID: LCS 320-2 Matrix: Water	84173/2-A					Clie	ent Sai	mple ID	: Lab Cor Prep Ty	ntrol Sa pe: Tot	imple al/NA	4
Analysis Batch: 284227	LCS %Recovery	LCS Qualifier	l imits						Ргер Ва	atch: 20	34173	5
13C4 PEOA	108	Quanner	25 150									
13C4 PEOS	100		25 - 150									
13C5 PENA	.98		25 - 150									
13C3 PFBS	103		25 - 150									
											_	8
Lab Sample ID: LCSD 320	-284173/3-A	L .				Client S	ample	ID: Lat	Control	Sample) Dup	
Matrix: Water Analysis Batch: 284227									Prep Ty Prep B:	pe: lot atch: 2	al/NA 84173	9
			Spike	LCSD	LCSD				%Rec.		RPD	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Perfluorobutanesulfonic acid (PFBS)			17.7	15.8		ng/L		90	72 - 151	9	30	
Perfluorohexanesulfonic acid			18.2	17.0		ng/L		94	73 - 157	1	30	
(PFHxS)			20.0	17 5		~~/l		00	74 420	2	20	
Periluoroneplanoic acid (PEPA)			20.0	C.11		ng/L		00	70 140	ى م	30	
			20.0	10.4		ng/L		92	70 - 140 60 - 144	1	30	13
(PEOS)			10.0	10.5		ng/L		33	03-144	1	50	
Perfluorononanoic acid (PFNA)			20.0	19.5		ng/L		97	73 - 147	4	30	
	LCSD	LCSD				-						
Isotope Dilution	%Recovery	Qualifier	Limits									
18O2 PFHxS	106		25 - 150									
13C4 PFHpA	113		25 - 150									
13C4 PFOA	107		25 - 150									
13C4 PFOS	112		25 - 150									
13C5 PFNA	104		25 - 150									
13C3 PFBS	108		25 - 150									

LCMS

Prep Batch: 284138

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-48588-1	AKNPW-112	Total/NA	Water	PFAS Prep	
320-48588-2	AKNPW-012	Total/NA	Water	PFAS Prep	
320-48588-3	AKNPW-013	Total/NA	Water	PFAS Prep	
320-48588-4	AKNPW-008	Total/NA	Water	PFAS Prep	
320-48588-5	AKNPW-005	Total/NA	Water	PFAS Prep	
320-48588-6	AKNPW-003	Total/NA	Water	PFAS Prep	
320-48588-7	AKNPW-014	Total/NA	Water	PFAS Prep	
320-48588-8	AKNPW-009	Total/NA	Water	PFAS Prep	
320-48588-9	AKNPW-007	Total/NA	Water	PFAS Prep	
320-48588-10	AKNPW-001	Total/NA	Water	PFAS Prep	
320-48588-11	AKNPW-422	Total/NA	Water	PFAS Prep	
320-48588-12	AKNPW-010	Total/NA	Water	PFAS Prep	
320-48588-13	AKNPW-424	Total/NA	Water	PFAS Prep	
320-48588-14	AKNPW-204	Total/NA	Water	PFAS Prep	
320-48588-15	AKNPW-015	Total/NA	Water	PFAS Prep	
320-48588-16	AKNPW-304	Total/NA	Water	PFAS Prep	
320-48588-17	AKNPW-011	Total/NA	Water	PFAS Prep	
MB 320-284138/1-A	Method Blank	Total/NA	Water	PFAS Prep	
LCS 320-284138/2-A	Lab Control Sample	Total/NA	Water	PFAS Prep	
LCSD 320-284138/3-A	Lab Control Sample Dup	Total/NA	Water	PFAS Prep	
Prep Batch: 284173					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-48588-18	AKNPW-016	Total/NA	Water	PFAS Prep	
320-48588-19	AKNPW-017	Total/NA	Water	PFAS Prep	
320-48588-20	AKNPW-020	Total/NA	Water	PFAS Prep	
320-48588-21	AKNPW-208	Total/NA	Water	PFAS Prep	
320-48588-22	AKNPW-006	Total/NA	Water	PFAS Prep	
MB 320-284173/1-A	Method Blank	Total/NA	Water	PFAS Prep	
LCS 320-284173/2-A	Lab Control Sample	Total/NA	Water	PFAS Prep	
LCSD 320-284173/3-A	Lab Control Sample Dup	Total/NA	Water	PFAS Prep	

Analysis Batch: 284202

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-48588-1	AKNPW-112	Total/NA	Water	WS-LC-0025	284138
				At1	
320-48588-2	AKNPW-012	Total/NA	Water	WS-LC-0025	284138
				At1	
320-48588-3	AKNPW-013	Total/NA	Water	WS-LC-0025	284138
				At1	
320-48588-4	AKNPW-008	Total/NA	Water	WS-LC-0025	284138
				At1	
320-48588-5	AKNPW-005	Total/NA	Water	WS-LC-0025	284138
				At1	
320-48588-6	AKNPW-003	Total/NA	Water	WS-LC-0025	284138
				At1	
320-48588-7	AKNPW-014	Total/NA	Water	WS-LC-0025	284138
				At1	
320-48588-8	AKNPW-009	Total/NA	Water	WS-LC-0025	284138
				At1	
320-48588-9	AKNPW-007	Total/NA	Water	WS-LC-0025	284138
				At1	

TestAmerica Sacramento

Prep Type

Total/NA

Matrix

Water

Analysis Batch: 284202 (Continued)

Client Sample ID

AKNPW-001

AKNPW-422

AKNPW-010

AKNPW-424

AKNPW-204

AKNPW-015

AKNPW-304

AKNPW-011

Method Blank

Lab Control Sample

Lab Control Sample Dup

LCMS (Continued)

Lab Sample ID

320-48588-10

320-48588-11

320-48588-12

320-48588-13

320-48588-14

320-48588-15

320-48588-16

320-48588-17

MB 320-284138/1-A

LCS 320-284138/2-A

LCSD 320-284138/3-A

Method

At1

At1

At1

At1

WS-LC-0025

WS-LC-0025

WS-LC-0025

WS-LC-0025 At1

WS-LC-0025

WS-LC-0025 At1

WS-LC-0025 At1

WS-LC-0025 At1

WS-LC-0025 At1

WS-LC-0025 At1

WS-LC-0025 At1

Prep Batch

284138

284138

284138

284138

284138

284138

284138

284138

284138

284138

284138

9 10 11 12 13

Analysis Batch: 284227

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-48588-18	AKNPW-016	Total/NA	Water	WS-LC-0025	284173
				At1	
320-48588-19	AKNPW-017	Total/NA	Water	WS-LC-0025	284173
				At1	
320-48588-20	AKNPW-020	Total/NA	Water	WS-LC-0025	284173
				At1	
320-48588-21	AKNPW-208	Total/NA	Water	WS-LC-0025	284173
				At1	
320-48588-22	AKNPW-006	Total/NA	Water	WS-LC-0025	284173
				At1	
MB 320-284173/1-A	Method Blank	Total/NA	Water	WS-LC-0025	284173
				At1	
LCS 320-284173/2-A	Lab Control Sample	Total/NA	Water	WS-LC-0025	284173
				At1	
LCSD 320-284173/3-A	Lab Control Sample Dup	Total/NA	Water	WS-LC-0025	284173
				At1	

Lab Sample ID: 320-48588-1

Lab Sample ID: 320-48588-2

Lab Sample ID: 320-48588-3

Lab Sample ID: 320-48588-4

Lab Sample ID: 320-48588-5

Lab Sample ID: 320-48588-6

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

2 3 4 5 6 7 8 9 10

Client Sample ID: AKNPW-112

Date	Collected:	03/14/19	16:11
Date	Received:	03/21/19	09:55

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 17:17	D1R	TAL SAC

Client Sample ID: AKNPW-012 Date Collected: 03/14/19 16:21 Date Received: 03/21/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 17:35	D1R	TAL SAC

Client Sample ID: AKNPW-013 Date Collected: 03/15/19 08:31 Date Received: 03/21/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 17:54	D1R	TAL SAC

Client Sample ID: AKNPW-008 Date Collected: 03/15/19 09:55 Date Received: 03/21/19 09:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 18:12	D1R	TAL SAC

Client Sample ID: AKNPW-005 Date Collected: 03/15/19 10:04 Date Received: 03/21/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 18:31	D1R	TAL SAC

Client Sample ID: AKNPW-003 Date Collected: 03/15/19 10:38 Date Received: 03/21/19 09:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 18:49	D1R	TAL SAC

TestAmerica Sacramento

Lab Sample ID: 320-48588-7

Lab Sample ID: 320-48588-8

Lab Sample ID: 320-48588-9

Matrix: Water

Matrix: Water

Matrix: Water

10

Client Sample ID: AKNPW-014

Date Collected: 03/15/19 10:47 Date Received: 03/21/19 09:55

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 19:08	D1R	TAL SAC

Client Sample ID: AKNPW-009 Date Collected: 03/15/19 11:35 Date Received: 03/21/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 19:45	D1R	TAL SAC

Client Sample ID: AKNPW-007 Date Collected: 03/15/19 12:40 Date Received: 03/21/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 20:03	D1R	TAL SAC

Client Sample ID: AKNPW-001 Date Collected: 03/15/19 15:01 Date Received: 03/21/19 09:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 20:22	D1R	TAL SAC

Client Sample ID: AKNPW-422 Date Collected: 03/15/19 15:33

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 20:40	D1R	TAL SAC

Client Sample ID: AKNPW-010 Date Collected: 03/15/19 16:00 Date Received: 03/21/19 09:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 20:58	D1R	TAL SAC

TestAmerica Sacramento

Matrix: Water

Date Receive	a: 03/21/19 0	9:55							
	Batch	Batch		Dil	Initial	Final	Batch	Prepared	
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	A
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	C.
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 20:40	D

Matrix: Water

Lab Sample ID: 320-48588-10

Lab Sample ID: 320-48588-11 Matrix: Water

Lab Sample ID: 320-48588-12

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

10

Client Sample ID: AKNPW-424

Date Collected: 03/15/19 16:56 Date Received: 03/21/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 21:17	D1R	TAL SAC

Client Sample ID: AKNPW-204 Date Collected: 03/15/19 17:14 Date Received: 03/21/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 21:35	D1R	TAL SAC

Client Sample ID: AKNPW-015 Date Collected: 03/15/19 17:13 Date Received: 03/21/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 21:54	D1R	TAL SAC

Client Sample ID: AKNPW-304 Date Collected: 03/15/19 17:04 Date Received: 03/21/19 09:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 22:12	D1R	TAL SAC

Client Sample ID: AKNPW-011 Date Collected: 03/15/19 18:11

Date Received: 03/21/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284138	03/26/19 13:17	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284202	03/26/19 22:31	D1R	TAL SAC

Client Sample ID: AKNPW-016 Date Collected: 03/16/19 12:37 Date Received: 03/21/19 09:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284173	03/26/19 14:37	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284227	03/27/19 02:49	D1R	TAL SAC

TestAmerica Sacramento

Lab Sample ID: 320-48588-13

Lab Sample ID: 320-48588-14

Lab Sample ID: 320-48588-15

	Frepareu		
ber	or Analyzed	Analyst	Lab
38	03/26/19 13:17	CJU	TAL SAC
202	03/26/19 22:12	D1R	TAL SAC
La	b Sample II	D: 320-	48588-17

Lab Sample ID: 320-48588-18

Lab Sample ID: 320-48588-16

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 320-48588-19

Lab Sample ID: 320-48588-20

Lab Sample ID: 320-48588-21

Client Sample ID: AKNPW-017

Date Collected: 03/16/19 15:19 Date Received: 03/21/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284173	03/26/19 14:37	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284227	03/27/19 03:07	D1R	TAL SAC

Client Sample ID: AKNPW-020 Date Collected: 03/18/19 17:43 Date Received: 03/21/19 09:55

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284173	03/26/19 14:37	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284227	03/27/19 03:26	D1R	TAL SAC

Client Sample ID: AKNPW-208 Date Collected: 03/18/19 11:26 Date Received: 03/21/19 09:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284173	03/26/19 14:37	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284227	03/27/19 03:44	D1R	TAL SAC

Client Sample ID: AKNPW-006 Date Collected: 03/18/19 12:32 Date Received: 03/21/19 09:55

Lab Sample ID: 320-48588-22 Matrix: Water

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	284173	03/26/19 14:37	CJU	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			284227	03/27/19 04:03	D1R	TAL SAC

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Project/Site: King Salmon TestAmerica Job ID: 320-48588-1

48588-1 2 3 4 5 6 7 8 9 10 11 12 13 14

Laboratory: TestAmerica Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-020	01-20-21
ANAB	DoD / DOE		L2468	01-20-21
Arizona	State Program	9	AZ0708	08-11-19
Arkansas DEQ	State Program	6	88-0691	06-17-19
California	State Program	9	2897	01-31-20
Colorado	State Program	8	CA00044	08-31-19
Connecticut	State Program	1	PH-0691	06-30-19
Florida	NELAP	4	E87570	06-30-19
Georgia	State Program	4	N/A	01-28-19 *
Hawaii	State Program	9	N/A	01-29-20
Illinois	NELAP	5	200060	03-17-19 *
Kansas	NELAP	7	E-10375	10-31-19
Louisiana	NELAP	6	30612	06-30-19
Maine	State Program	1	CA0004	04-14-20
Michigan	State Program	5	9947	01-31-20
Nevada	State Program	9	CA00044	07-31-19
New Hampshire	NELAP	1	2997	04-18-19
New Jersey	NELAP	2	CA005	06-30-19
New York	NELAP	2	11666	03-31-19 *
Oregon	NELAP	10	4040	01-29-20
Pennsylvania	NELAP	3	68-01272	03-31-19 *
Texas	NELAP	6	T104704399	05-31-19
US Fish & Wildlife	Federal		LE148388-0	07-31-19
USDA	Federal		P330-18-00239	01-17-21
USEPA UCMR	Federal	1	CA00044	12-31-20
Utah	NELAP	8	CA00044	02-28-19 *
Vermont	State Program	1	VT-4040	04-30-19
Virginia	NELAP	3	460278	03-14-19 *
Washington	State Program	10	C581	05-05-19
West Virginia (DW)	State Program	3	9930C	12-31-19
Wyoming	State Program	8	8TMS-L	01-28-19 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Client: Shannon & Wilson, Inc Project/Site: King Salmon

Method	Method Description	Protocol	Laboratory
WS-LC-0025 At1	Fluorinated Alkyl Substances	TAL-SAC	TAL SAC
PFAS Prep	Preparation, Direct Inject PFAS	TAL-SAC	TAL SAC

Protocol References:

TAL-SAC = TestAmerica Laboratories, West Sacramento, Facility Standard Operating Procedure.

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: King Salmon TestAmerica Job ID: 320-48588-1

1	
_	
5	
5	
5	5
5	
5	
5	
5	
5	
5	0
5	Ō
5	
5	9
5	
5	
5	
5	
5	
5	
5	
5	13
-	

1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-48588-1	AKNPW-112	Water	03/14/19 16:11	03/21/19 09:55
320-48588-2	AKNPW-012	Water	03/14/19 16:21	03/21/19 09:55
320-48588-3	AKNPW-013	Water	03/15/19 08:31	03/21/19 09:55
320-48588-4	AKNPW-008	Water	03/15/19 09:55	03/21/19 09:55
320-48588-5	AKNPW-005	Water	03/15/19 10:04	03/21/19 09:55
320-48588-6	AKNPW-003	Water	03/15/19 10:38	03/21/19 09:55
320-48588-7	AKNPW-014	Water	03/15/19 10:47	03/21/19 09:55
320-48588-8	AKNPW-009	Water	03/15/19 11:35	03/21/19 09:55
320-48588-9	AKNPW-007	Water	03/15/19 12:40	03/21/19 09:55
320-48588-10	AKNPW-001	Water	03/15/19 15:01	03/21/19 09:55
320-48588-11	AKNPW-422	Water	03/15/19 15:33	03/21/19 09:55
320-48588-12	AKNPW-010	Water	03/15/19 16:00	03/21/19 09:55
320-48588-13	AKNPW-424	Water	03/15/19 16:56	03/21/19 09:55
320-48588-14	AKNPW-204	Water	03/15/19 17:14	03/21/19 09:55
320-48588-15	AKNPW-015	Water	03/15/19 17:13	03/21/19 09:55
320-48588-16	AKNPW-304	Water	03/15/19 17:04	03/21/19 09:55
320-48588-17	AKNPW-011	Water	03/15/19 18:11	03/21/19 09:55
320-48588-18	AKNPW-016	Water	03/16/19 12:37	03/21/19 09:55
320-48588-19	AKNPW-017	Water	03/16/19 15:19	03/21/19 09:55
320-48588-20	AKNPW-020	Water	03/18/19 17:43	03/21/19 09:55
320-48588-21	AKNPW-208	Water	03/18/19 11:26	03/21/19 09:55
320-48588-22	AKNPW-006	Water	03/18/19 12:32	03/21/19 09:55

GEOTECHNICAL AND ENVIRONMENT CEOTECHNICAL AND ENVIRONMENT 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600	ON, INC. CHA	IN-OF-CUSTOD	Analytical Methods (inclu	Labo Attn: de preservativ	pratory Test America of David Alltocker ve if used)
Turn Around Time:	Quote No:				o Conteres
Please Specify		Date 15		/ /	Remarks/Matrix
Sample Identity	Lab No. Time	Sampled		1	Sample Containers
AKNPW-101	1611	3/19/19		2	Groundwater
+KNPW-112	1611	3/14/14		2	1
KNPW-012	1621	3/14/19		2	
KNPW-013	0831	3/15/19		2	
KNPW-008	0955		NI NIN MALANAN	2	
KNPW-OVDS	10004	320-48588 Chain of Cust	ody	2	
KNPW-003	1038			2	
KNPW-014	1042			2	
KNDW-ODO	1135			2	1
KNDW-007	1240			2	\vee
Project Information	Sample Receipt	Reliquished By: 1.	Reliquished By:	2.	Reliquished By: 3.
umber: 102502-003	Total No. of Containers:	Signature: Time: 1153	Signature: T	īme:	Signature: Time:
ame: King Slando	COC Seals/Intact?	- ann			
ontact: KRF	Received Good Cond./Cold	Printed Name: Date: 3/20	19 Printed Name:	Date:	Printed Name: Date:
ngoing Project? Yes No	Temp: 1.9 °C	G. Cherissa Dukelow			and the second
impler: CAB, ARM, GCD	Delivery Method: Gold Streak	Company:	Company:		Company:
No	otes:	Received By: 1	Received By:	2	Received By: 3
please bill to	102582-003,	Signature: Time: 095	Signature: T	Time:	Signature: Time:
		Printer Name: Date: 21 Mu	Printed Name:	Date:	Printed Name: Date:
stribution: White - w/shipment - returne Yellow - w/shipment - for co Pink - Shannon & Wilson - ii	ed to Shannon & Wilson w/ laboratory re nsignee files ob file	TAW SAC 19°C	Company:		Company:

14

No. 35800

Page 45 of 48

EU SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTA 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600	ON, INC.	CH	AIN-	OF-	CUSI	FODY	Analytical	CORD Methods (in) nclude pres	Labor Attn:	ratory <u>Tes</u> Dovid e if used)	Page <u>7</u> St Amer Alltuc	c of <u>s</u> ica Ker
www.shannonwilson.co	Quote No:				/			/ /	/ /	/	//	aires	
Normal Rush	J-Flags:	Yes	No		Le	/ /	/ /		/	/	AND CO	/	
Please Specify				/	5/	/	/ /	/ /	/	1	101 HUM	Remarks/Ma	atrix
Sample Identity	Lab No.	Time	Date Sampled	15	2/	/ /	/	/	/	/^	°/	Sample Conta	ainers
AKNPW-001		1501	3/15/1	7						2	Grou	Juster	-
AKNFW-4ZZ		1533								Z	-	1	
AKNPW-DIO		1600								Z			
AKNPW-424		1056								Z			
AKNPW-ZO4		1714								Z			
AKNPW-015		1713								Z			
AKNPW-3024		1704								Z			
TEN PW-011		1811	V.							Z			
AKNPW-DID		1237	3/16/1	9						2			
AKNPW-017		1519	T.							2	~	/	
Project Information	Sample	Receipt		Relic	uished By	<i>ı</i> : 1.	Re	liquished I	By: 2.		Reliq	uished By:	: 3.
lumber: 102582-003	Total No. of Contai	ners:	Sign	ature;	0	Time: 1153	_ Signature:		Time:		Signature:		Time:
lame: Kiner Salmon	COC Seals/Intact?	Y/N/NA	0	UN	the				_			crelle drata	
iontact: KRIF	Received Good Co	nd./Cold	Prin	ted Name	Sco Du	Date: 5/20/1	7 Printed Nar	ne:	Date:		Printed Name:		Date:
Ingoing Project? Yes D No	Temp:		91	Cheri	352 001	nenow	Company				Company		-
Sampler: ARM, CAB, GCD	Delivery Method:		5	ANA A	na & Wi	ISON IN	Company.				Company.		
No	otes:			Rec	ceived By:	1.	R	eceived B	y: 2.		Rec	eived By:	3.
Plesse bill to	102582	-093.	Sign	hature:	0.A	Time: <u>\$155</u>	_ Signature:		Time:		Signature:	1	Time:
			Ţ	tep Name	(Ladia	pate: <u>ZI Mar</u>	Printed Nar	ne:	Date:		Printed Name:		Date:
Jistribution: White - w/shipment - returne Yellow - w/shipment - for co	ed to Shannon & Wilso Insignee files	on w/ laboratory	report Con	npany:	441	1.9%	Company:				Company:		

 $\frac{1}{4}$

No. 35833

5

CENTRON SHANNON & WILS GEOTECHNICAL AND ENVIRONMENTA 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600 www.shannonwilson.co	ON, INC.	CHA	AIN-	OF-	CUSI		Analytical	Methods (inc	clude pre	Labor Attn: servative	ratory Test A Dervice A e if used)	ge <u>3</u> of <u>merica</u>
Turn Around Time:	Quote No:				/	/	/	/ /	/	/	righter	
Normal Rush	J-Flags:	Yes	No		1.0	/ /		/	/	/	Set SCO	
Please Specify				1	5+/	/	/ /	/ /	/	1	a Num Rem	arks/Matrix
Sample Identity	Lab No.	Time	Date Sampled	R	-/	/ /	/	/	/	/ ^	Compo Sampl	e Containers
KNPW-020		1743	3/18/19	1	1					2	Grounde	ater
AKNPW-2008		11:26								2	1	
HKNDLL-0006	and the second	12:32								2	1	
Project Information	Sample	Receipt		Reliq	uished By	r: 1.	Rel	liquished B	y: 2		Reliquishe	ed By: 3.
mber: 102582-003	Total No. of Contain	ners:	Sign	ature:	0	Time: 1153	Signature:		Time:		Signature:	Time:
me: Hing Salmon	COC Seals/Intact?	Y/N/NA	7	M	m	Due Stad	9 Dine 111		Det	_	Distant Name	Deter
ntact: KRF	Received Good Cor	nd./Cold	- C	CIADO	canD.	Valor)	Printed Nan	ne:	Date:		Printed Name:	Date:
mpler (AB, ARM, GCO	Delivery Method:		Com	ipany:	St Wi	KON TA	Company:				Company:	
No	otes:		00	Rec	eived By:	1.	R	eceived By	: 2.	14.5	Received	By: 3.
Please bill to	102582-	003	Sign		U.L.	Time: 0955	Signature:		Time:		Signature:	Time:
			RE H		Adl.	Date Zimbr /	Printed Nan	ne:	Date:		Printed Name:	Date:
stribution: White - w/shipment - returne Yellow - w/shipment - for co	ed to Shannon & Wilso onsignee files	n w/ laboratory	report Com	pany:	Sac 1	Sqo.	Company:				Company:	

14

No. 35802

Client: Shannon & Wilson, Inc

Login Number: 48588 List Number: 1 Creator: Horner, Nathaniel A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	102582-003, 102582
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-48588-1

List Source: TestAmerica Sacramento

Laboratory Data Review Checklist

Completed By:

Adam Wyborny

Title:

Environmental Engineering Staff

Date:

April 1, 2019

CS Report Name:

King Salmon DOT&PF PFAS

Report Date:

March 28, 2019

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

TestAmerica Laboratories, Inc.

Laboratory Report Number:

320-48588-1

ADEC File Number:

2569.38.033

Hazard Identification Number:

26981

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

• Yes O No Comments:

The ADEC certified the TestAmerica Laboratories West Sacramento, CA location for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018. These compounds were included in the ADEC's Contaminated Sites Laboratory Approval 17-020.

- b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
 - Yes No Comments:

Analyses were performed by TestAmerica Laboratories, Inc. in West Sacramento, CA.

- 2. <u>Chain of Custody (CoC)</u>
 - a. CoC information completed, signed, and dated (including released/received by)?

Yes	O No	Comments:

b. Correct Analyses requested?

• Yes O No

Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

• Yes	O No	Comments:

The temperature blank was measured within the acceptable temperature range of 0° C to 6° C upon receipt at the laboratory.

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

• Yes • No Comments:

Analysis of PFAS compounds does not require chemical preservation.

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

• Yes • No Comments:

The sample receipt form notes that the samples were received in good condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

○ Yes ^{(©} No Comments:

There were no discrepancies noted in the sample receipt documentation.

e. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

- 4. <u>Case Narrative</u>
 - a. Present and understandable?

• Yes • No Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

• Yes • No Comments:

The samples arrived in good condition and properly preserved. The temperature of the sample cooler received with this shipment was 1.9 ° C upon arrival at the laboratory.

The case narrative notes that there was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with preparation batches 320-284138 and 320-284173.

c. Were all corrective actions documented?

○ Yes No Comments:

No corrective actions were documented in the case narrative.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The case narrative does not note an effect on data quality.

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

• Yes • O No

Comments:

b. All applicable holding times met?

• Yes • No Comments:

The laboratory indicates that the water samples were analyzed using direct injection and in-line analysis. The 28-day hold time for analysis using direct aqueous injection (DAI) was met for all samples.

- c. All soils reported on a dry weight basis?

N/A; soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

• Yes O No

Comments:

The LOQ, equivalent to the TestAmerica Reporting Limit (RL), is less than the applicable ADEC regulatory limits for drinking water and soil.

e. Data quality or usability affected?

○ Yes No Comments:

The data quality and/or usability are not affected.

6. <u>QC Samples</u>

a. Method Blank

i. One method blank reported per matrix, analysis and 20 samples?

• Yes • No Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

Yes O No

Comments:

iii. If above LOQ, what samples are affected?

Comments:

None; PFAS compounds were not detected in the method blank samples.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

○ Yes ● No Comments:

No samples are affected; therefore, qualification of the results was not required

v. Data quality or usability affected?

Comments:

The data quality and/or usability are not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

• Yes • No Comments:

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
- Yes [●] No Comments:

N/A; metals and/or inorganics were not analyzed as part of this work order.

- iii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
- Yes No Comments:
- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

• Yes • No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

None; analytical accuracy and precision were demonstrated to be within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

○ Yes ⊙ No Comments:

Qualification of the data was not required; see above.

320-48588-1

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability are not affected.

c. Surrogates – Organics Only

i. Are surrogate recoveries reported for organic analyses - field, QC and laboratory samples?

• Yes • No Comments:

The analytical method WS-LC-0025 uses IDA recovery, which entails adding a 13C-isotope of each target analyte, and assessing the recovery of each analyte. The isotopically-labeled compounds are discussed as surrogates for this method.

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

• Yes O No Comments:

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

O Yes 💿 No

Comments:

N/A; there were no IDA recovery failures associated with this work order.

iv. Data quality or usability affected?

Comments:

The data quality and usability are not affected; see above.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?

(If not, enter explanation below.)

○ Yes ● No Comments:

PFAS are not volatile compounds; therefore, a trip blank is not required.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

O Yes O No

Comments:

N/A; a trip blank is not required.

iii. All results less than LOQ?

O Yes 💿 No

N/A; a trip blank is not required.

iv. If above LOQ, what samples are affected?

Comments:

Comments:

None; a trip blank was not submitted with this work order.

v. Data quality or usability affected?

Comments:

The data quality and/or usability are not affected; see above.

- e. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

• Yes O No Comments:

ii. Submitted blind to lab?

• Yes O No

Comments:

The field duplicate pairs AKNPW-012 / AKNPW-112 and AKNPW-204 / AKNPW-304 were submitted with this work order.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$

> Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

• Yes O No

Comments:

The relative precision demonstrated between the detected PFAS results of the field duplicate samples was within the recommended DQO of 30% for all analytes.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

The data quality and/or usability is not affected; see above.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

○ Yes ○ No ④ Not Applicable

Samples for this project are not collected with reusable equipment, therefore a practical potential for equipment based cross-contamination does not exist.

i. All results less than LOQ?

• Yes • No Comments:

N/A; an equipment blank was not submitted with this work order.

ii. If above LOQ, what samples are affected?

Comments:

None; see above.

iii. Data quality or usability affected?

Comments:

The data quality and usability were not affected; see above.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

🔿 Yes 💿 No

Comments:

There were no additional flags/qualifiers required for this work order.

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-52782-1

Client Project/Site: King Salmon Annual Revision: 1

For: Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Authorized for release by: 11/6/2019 9:14:06 AM

David Alltucker, Project Manager I (916)374-4383 david.alltucker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Isotope Dilution Summary	17
QC Sample Results	18
QC Association Summary	20
Lab Chronicle	21
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

3

Qualifiers

LCMS

Qualifier J

Qualifier Description Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
Job ID: 320-52782-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-52782-1

Case Narrative

Revision - 11/6/19

This report has been revised to report additional analytes at client request.

Receipt

The samples were received on 7/30/2019 8:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.6° C.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) PFAS Prep: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-312108.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: AKNPW-018

No Detections.

lient Sample ID: AKNPW-012							Lab Sample ID: 320-52782-2			
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type		
Perfluorooctanoic acid (PFOA)	13		2.0	0.75	ng/L	1	WS-LC-0025 At1	Total/NA		
Perfluorohexanesulfonic acid (PFHxS)	6.7		2.0	0.87	ng/L	1	WS-LC-0025 At1	Total/NA		
Perfluoroheptanoic acid (PFHpA)	2.6		2.0	0.80	ng/L	1	WS-LC-0025 At1	Total/NA		
Perfluorobutanesulfonic acid (PFBS)	2.5		2.0	0.92	ng/L	1	WS-LC-0025 At1	Total/NA		

Client Sample ID: AKNPW-011

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorooctanoic acid (PFOA)	4.2		2.0	0.75	ng/L	1	WS-LC-0025	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.1		2.0	0.87	ng/L	1	At1 WS-LC-0025	Total/NA
							At1	

Client Sample ID: AKNPW-111

Analyta	Beault (Qualifiar	Ы	MDI	Unit	Dil Eco	_	Mathad	Bron Tuno
Analyte	Result	Juaimer	KL	WDL	Unit	DIFac	υ	wethod	Prep Type
Perfluorooctanoic acid (PFOA)	4.1		2.0	0.75	ng/L	1	_	WS-LC-0025	Total/NA
								At1	
Perfluorohexanesulfonic acid (PFHxS)	2.0		2.0	0.87	ng/L	1		WS-LC-0025	Total/NA
								At1	

Client Sample ID: AKNPW-424

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	2.4		2.0	0.75	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	6.4		2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.2	J	2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorobutanesulfonic acid (PFBS)	8.0		2.0	0.92	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-422

Analyte Perfluorooctanoic acid (PFOA)	Result 3.1	Qualifier	RL 2.0	MDL 0.75	Unit ng/L	Dil Fac	D	Method WS-LC-0025 At1	Prep Type Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.7	J	2.0	0.87	ng/L	1		WS-LC-0025	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.1	J	2.0	0.92	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-208

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	23	2.0	0.75 ng/L	1	WS-LC-0025 At1	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.7	2.0	1.3 ng/L	1	WS-LC-0025 At1	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Job ID: 320-52782-1

Lab Sample ID: 320-52782-1

Lab Sample ID: 320-52782-3

Lab Sample ID: 320-52782-4

Lab Sample ID: 320-52782-5

Lab Sample ID: 320-52782-6

Lab Sample ID: 320-52782-7

Detection Summary

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Job ID: 320-52782-1

Client Sample ID: AKNPW-2	lient Sample ID: AKNPW-208 (Continued)							Lab Sample ID: 320-52782-7					
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type					
Perfluorohexanesulfonic acid (PFHxS)	9.7		2.0	0.87	ng/L	1	WS-LC-0025 At1	Total/NA	4				
Perfluorononanoic acid (PFNA)	0.93	J	2.0	0.65	ng/L	1	WS-LC-0025 At1	Total/NA	5				
Perfluoroheptanoic acid (PFHpA)	3.9		2.0	0.80	ng/L	1	WS-LC-0025 At1	Total/NA					
Perfluorobutanesulfonic acid (PFBS)	4.3		2.0	0.92	ng/L	1	WS-LC-0025 At1	Total/NA					
Client Sample ID: AKNPW-0)05					Lab S	ample ID: 32	20-52782-8					

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorooctanoic acid (PFOA)	1.8	<u> </u>	2.0	0.75	ng/L	1	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.9	J	2.0	0.87	ng/L	1	WS-LC-0025 At1	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.1	J	2.0	0.92	ng/L	1	WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-007

Analyte	Result	Qualifier		MDL	Unit	Dil Fac	D	Method	Prep Type
	2.2		2.0	0.75	ng/L	I		WS-LC-0025 At1	TOTAI/INA
Perfluorohexanesulfonic acid (PFHxS)	2.4		2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.1		2.0	0.80	ng/L	1		WS-LC-0025 At1	Total/NA

Client Sample ID: AKNPW-008

Lab Sample ID: 320-52782-10

Lab Sample ID: 320-52782-9

Analyte	Result Q	ualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	2.8		2.0	0.75	ng/L	1	_	WS-LC-0025 At1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.5 J		2.0	0.87	ng/L	1		WS-LC-0025 At1	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.6 J		2.0	0.92	ng/L	1		WS-LC-0025 At1	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Client Sample ID: AKNPW-018 Date Collected: 07/24/19 15:45 Date Received: 07/30/19 08:55

Method: WS-LC-0025 At1 - Flu	orinated Al	kyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	ND		2.0	0.75	ng/L		08/02/19 10:31	08/03/19 15:12	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		08/02/19 10:31	08/03/19 15:12	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.87	ng/L		08/02/19 10:31	08/03/19 15:12	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		08/02/19 10:31	08/03/19 15:12	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		08/02/19 10:31	08/03/19 15:12	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		08/02/19 10:31	08/03/19 15:12	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOA	112		25 - 150				08/02/19 10:31	08/03/19 15:12	1
13C4 PFOS	112		25 - 150				08/02/19 10:31	08/03/19 15:12	1
1802 PFHxS	114		25 - 150				08/02/19 10:31	08/03/19 15:12	1
13C5 PFNA	112		25 - 150				08/02/19 10:31	08/03/19 15:12	1
13C4 PFHpA	116		25 - 150				08/02/19 10:31	08/03/19 15:12	1
13C3 PFBS	107		25 - 150				08/02/19 10:31	08/03/19 15:12	1

Job ID: 320-52782-1

Lab Sample ID: 320-52782-1 Matrix: Water

5

6

Eurofins TestAmerica, Sacramento

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Client Sample ID: AKNPW-012 Date Collected: 07/24/19 17:23 Date Received: 07/30/19 08:55

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Perfluorooctanoic acid (PFOA)	13		2.0	0.75	ng/L		08/02/19 10:31	08/03/19 15:30	1			
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		08/02/19 10:31	08/03/19 15:30	1			
Perfluorohexanesulfonic acid (PFHxS)	6.7		2.0	0.87	ng/L		08/02/19 10:31	08/03/19 15:30	1			
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		08/02/19 10:31	08/03/19 15:30	1			
Perfluoroheptanoic acid (PFHpA)	2.6		2.0	0.80	ng/L		08/02/19 10:31	08/03/19 15:30	1			
Perfluorobutanesulfonic acid (PFBS)	2.5		2.0	0.92	ng/L		08/02/19 10:31	08/03/19 15:30	1			
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
13C4 PFOA	105		25 - 150				08/02/19 10:31	08/03/19 15:30	1			
13C4 PFOS	111		25 - 150				08/02/19 10:31	08/03/19 15:30	1			
18O2 PFHxS	116		25 - 150				08/02/19 10:31	08/03/19 15:30	1			
13C5 PFNA	103		25 - 150				08/02/19 10:31	08/03/19 15:30	1			
13C4 PFHpA	114		25 - 150				08/02/19 10:31	08/03/19 15:30	1			
13C3 PFBS	105		25 - 150				08/02/19 10:31	08/03/19 15:30	1			

11/6/2019 (Rev. 1)

Lab Sample ID: 320-52782-2 Matrix: Water

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Client Sample ID: AKNPW-011 Date Collected: 07/24/19 16:32 Date Received: 07/30/19 08:55

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	4.2		2.0	0.75	ng/L		08/02/19 10:31	08/03/19 15:49	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		08/02/19 10:31	08/03/19 15:49	1
Perfluorohexanesulfonic acid (PFHxS)	2.1		2.0	0.87	ng/L		08/02/19 10:31	08/03/19 15:49	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		08/02/19 10:31	08/03/19 15:49	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		08/02/19 10:31	08/03/19 15:49	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		08/02/19 10:31	08/03/19 15:49	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOA	108		25 - 150				08/02/19 10:31	08/03/19 15:49	1
13C4 PFOS	110		25 - 150				08/02/19 10:31	08/03/19 15:49	1
18O2 PFHxS	109		25 - 150				08/02/19 10:31	08/03/19 15:49	1
13C5 PFNA	107		25 - 150				08/02/19 10:31	08/03/19 15:49	1
13C4 PFHpA	111		25 - 150				08/02/19 10:31	08/03/19 15:49	1
13C3 PFBS	101		25 - 150				08/02/19 10:31	08/03/19 15:49	1

11/6/2019 (Rev. 1)

Matrix: Water

5

6

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Client Sample ID: AKNPW-111 Date Collected: 07/24/19 16:00 Date Received: 07/30/19 08:55

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	4.1		2.0	0.75	ng/L		08/02/19 10:31	08/03/19 16:07	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		08/02/19 10:31	08/03/19 16:07	1
Perfluorohexanesulfonic acid (PFHxS)	2.0		2.0	0.87	ng/L		08/02/19 10:31	08/03/19 16:07	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		08/02/19 10:31	08/03/19 16:07	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		08/02/19 10:31	08/03/19 16:07	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		08/02/19 10:31	08/03/19 16:07	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOA	110		25 - 150				08/02/19 10:31	08/03/19 16:07	1
13C4 PFOS	110		25 - 150				08/02/19 10:31	08/03/19 16:07	1
18O2 PFHxS	116		25 - 150				08/02/19 10:31	08/03/19 16:07	1
13C5 PFNA	111		25 - 150				08/02/19 10:31	08/03/19 16:07	1
13C4 PFHpA	113		25 - 150				08/02/19 10:31	08/03/19 16:07	1
13C3 PFBS	104		25 - 150				08/02/19 10:31	08/03/19 16:07	1

Job ID: 320-52782-1

Lab Sample ID: 320-52782-4

Matrix: Water

Eurofins TestAmerica, Sacramento

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Client Sample ID: AKNPW-424 Date Collected: 07/25/19 15:14 Date Received: 07/30/19 08:55

Method: WS-LC-0025 At1 - Flu	orinated Al	kyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	2.4		2.0	0.75	ng/L		08/02/19 10:31	08/03/19 16:26	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		08/02/19 10:31	08/03/19 16:26	1
Perfluorohexanesulfonic acid (PFHxS)	6.4		2.0	0.87	ng/L		08/02/19 10:31	08/03/19 16:26	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		08/02/19 10:31	08/03/19 16:26	1
Perfluoroheptanoic acid (PFHpA)	1.2	J	2.0	0.80	ng/L		08/02/19 10:31	08/03/19 16:26	1
Perfluorobutanesulfonic acid (PFBS)	8.0		2.0	0.92	ng/L		08/02/19 10:31	08/03/19 16:26	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOA	112		25 - 150				08/02/19 10:31	08/03/19 16:26	1
13C4 PFOS	110		25 - 150				08/02/19 10:31	08/03/19 16:26	1
1802 PFHxS	114		25 - 150				08/02/19 10:31	08/03/19 16:26	1
13C5 PFNA	114		25 - 150				08/02/19 10:31	08/03/19 16:26	1
13C4 PFHpA	116		25 - 150				08/02/19 10:31	08/03/19 16:26	1
13C3 PFBS	101		25 - 150				08/02/19 10:31	08/03/19 16:26	1

Job ID: 320-52782-1

Lab Sample ID: 320-52782-5 Matrix: Water

5 6

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Client Sample ID: AKNPW-422 Date Collected: 07/25/19 14:23 Date Received: 07/30/19 08:55

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	3.1		2.0	0.75	ng/L		08/02/19 10:31	08/03/19 16:44	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		08/02/19 10:31	08/03/19 16:44	1
Perfluorohexanesulfonic acid (PFHxS)	1.7	J	2.0	0.87	ng/L		08/02/19 10:31	08/03/19 16:44	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		08/02/19 10:31	08/03/19 16:44	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		08/02/19 10:31	08/03/19 16:44	1
Perfluorobutanesulfonic acid (PFBS)	1.1	J	2.0	0.92	ng/L		08/02/19 10:31	08/03/19 16:44	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOA	107		25 - 150				08/02/19 10:31	08/03/19 16:44	1
13C4 PFOS	110		25 - 150				08/02/19 10:31	08/03/19 16:44	1
18O2 PFHxS	116		25 - 150				08/02/19 10:31	08/03/19 16:44	1
13C5 PFNA	106		25 - 150				08/02/19 10:31	08/03/19 16:44	1
13C4 PFHpA	117		25 - 150				08/02/19 10:31	08/03/19 16:44	1
13C3 PFBS	105		25 - 150				08/02/19 10:31	08/03/19 16:44	1

11/6/2019 (Rev. 1)

Lab Sample ID: 320-52782-6 Matrix: Water

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Client Sample ID: AKNPW-208 Date Collected: 07/25/19 13:27 Date Received: 07/30/19 08:55

Method: WS-LC-0025 At1 - Flu	orinated A	lkyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	23		2.0	0.75	ng/L		08/02/19 10:31	08/03/19 17:03	1
Perfluorooctanesulfonic acid (PFOS)	2.7		2.0	1.3	ng/L		08/02/19 10:31	08/03/19 17:03	1
Perfluorohexanesulfonic acid (PFHxS)	9.7		2.0	0.87	ng/L		08/02/19 10:31	08/03/19 17:03	1
Perfluorononanoic acid (PFNA)	0.93	J	2.0	0.65	ng/L		08/02/19 10:31	08/03/19 17:03	1
Perfluoroheptanoic acid (PFHpA)	3.9		2.0	0.80	ng/L		08/02/19 10:31	08/03/19 17:03	1
Perfluorobutanesulfonic acid (PFBS)	4.3		2.0	0.92	ng/L		08/02/19 10:31	08/03/19 17:03	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOA	102		25 - 150				08/02/19 10:31	08/03/19 17:03	1
13C4 PFOS	103		25 - 150				08/02/19 10:31	08/03/19 17:03	1
18O2 PFHxS	106		25 - 150				08/02/19 10:31	08/03/19 17:03	1
13C5 PFNA	96		25 - 150				08/02/19 10:31	08/03/19 17:03	1
13C4 PFHpA	106		25 - 150				08/02/19 10:31	08/03/19 17:03	1
13C3 PFBS	99		25 - 150				08/02/19 10:31	08/03/19 17:03	1

Lab Sample ID: 320-52782-7 Matrix: Water

11/6/2019 (Rev. 1)

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Client Sample ID: AKNPW-005 Date Collected: 07/25/19 12:59 Date Received: 07/30/19 08:55

Method: WS-LC-0025 At1 - Flu	uorinated Al	kyl Substa	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	1.8	J	2.0	0.75	ng/L		08/02/19 10:31	08/03/19 17:40	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		08/02/19 10:31	08/03/19 17:40	1
Perfluorohexanesulfonic acid (PFHxS)	1.9	J	2.0	0.87	ng/L		08/02/19 10:31	08/03/19 17:40	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		08/02/19 10:31	08/03/19 17:40	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		08/02/19 10:31	08/03/19 17:40	1
Perfluorobutanesulfonic acid (PFBS)	1.1	J	2.0	0.92	ng/L		08/02/19 10:31	08/03/19 17:40	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOA	108		25 - 150				08/02/19 10:31	08/03/19 17:40	1
13C4 PFOS	117		25 - 150				08/02/19 10:31	08/03/19 17:40	1
18O2 PFHxS	113		25 - 150				08/02/19 10:31	08/03/19 17:40	1
13C5 PFNA	111		25 - 150				08/02/19 10:31	08/03/19 17:40	1
13C4 PFHpA	112		25 - 150				08/02/19 10:31	08/03/19 17:40	1
13C3 PEBS	110		25 - 150				08/02/19 10·31	08/03/19 17:40	1

Job ID: 320-52782-1

Lab Sample ID: 320-52782-8 Matrix: Water

Matrix: Water

11/6/2019 (Rev. 1)

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Client Sample ID: AKNPW-007 Date Collected: 07/25/19 16:40 Date Received: 07/30/19 08:55

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	2.2		2.0	0.75	ng/L		08/02/19 10:31	08/03/19 17:58	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		08/02/19 10:31	08/03/19 17:58	1
Perfluorohexanesulfonic acid (PFHxS)	2.4		2.0	0.87	ng/L		08/02/19 10:31	08/03/19 17:58	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		08/02/19 10:31	08/03/19 17:58	1
Perfluoroheptanoic acid (PFHpA)	3.1		2.0	0.80	ng/L		08/02/19 10:31	08/03/19 17:58	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		08/02/19 10:31	08/03/19 17:58	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOA	116		25 - 150				08/02/19 10:31	08/03/19 17:58	1
13C4 PFOS	99		25 - 150				08/02/19 10:31	08/03/19 17:58	1
18O2 PFHxS	112		25 - 150				08/02/19 10:31	08/03/19 17:58	1
13C5 PFNA	100		25 - 150				08/02/19 10:31	08/03/19 17:58	1
13C4 PFHpA	107		25 - 150				08/02/19 10:31	08/03/19 17:58	1
13C3 PFBS	101		25 - 150				08/02/19 10:31	08/03/19 17:58	1

Job ID: 320-52782-1

Eurofins TestAmerica, Sacramento

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

13C3 PFBS

Client Sample ID: AKNPW-008 Date Collected: 07/26/19 09:50 Date Received: 07/30/19 08:55

Method: WS-LC-0025 At1 - Fl	uorinated A	lkyl Subst	ances						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	2.8		2.0	0.75	ng/L		08/02/19 10:31	08/03/19 18:17	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		08/02/19 10:31	08/03/19 18:17	1
Perfluorohexanesulfonic acid (PFHxS)	1.5	J	2.0	0.87	ng/L		08/02/19 10:31	08/03/19 18:17	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		08/02/19 10:31	08/03/19 18:17	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		08/02/19 10:31	08/03/19 18:17	1
Perfluorobutanesulfonic acid (PFBS)	1.6	J	2.0	0.92	ng/L		08/02/19 10:31	08/03/19 18:17	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOA	103		25 - 150				08/02/19 10:31	08/03/19 18:17	1
13C4 PFOS	107		25 - 150				08/02/19 10:31	08/03/19 18:17	1
18O2 PFHxS	112		25 - 150				08/02/19 10:31	08/03/19 18:17	1
13C5 PFNA	109		25 - 150				08/02/19 10:31	08/03/19 18:17	1
13C4 PFHpA	112		25 - 150				08/02/19 10:31	08/03/19 18:17	1

25 - 150

103

Job ID: 320-52782-1

Lab Sample ID: 320-52782-10

08/02/19 10:31 08/03/19 18:17

Matrix: Water

5 6

1

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Matrix: Water

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances

Job ID: 320-52782-1

Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limi							
		PFOA	PFOS	PFHxS	PFNA	PFHpA	3C3-PFB		
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)		
320-52782-1	AKNPW-018	112	112	114	112	116	107		
320-52782-2	AKNPW-012	105	111	116	103	114	105		
320-52782-3	AKNPW-011	108	110	109	107	111	101		
320-52782-4	AKNPW-111	110	110	116	111	113	104		
320-52782-5	AKNPW-424	112	110	114	114	116	101		
320-52782-6	AKNPW-422	107	110	116	106	117	105		
320-52782-7	AKNPW-208	102	103	106	96	106	99		
320-52782-8	AKNPW-005	108	117	113	111	112	110		
320-52782-9	AKNPW-007	116	99	112	100	107	101		
320-52782-10	AKNPW-008	103	107	112	109	112	103		
LCS 320-312108/2-A	Lab Control Sample	103	107	110	93	100	103		
LCSD 320-312108/3-A	Lab Control Sample Dup	111	111	113	91	106	109		
MB 320-312108/1-A	Method Blank	103	100	106	99	105	101		
Surrogate Legend									
PEOA = 13C4 PEOA									

PFOA = 13C4 PFOA PFOS = 13C4 PFOS PFHxS = 18O2 PFHxS PFNA = 13C5 PFNA PFHpA = 13C4 PFHpA 13C3-PFBS = 13C3 PFBS

Eurofins TestAmerica, Sacramento

Prep Type: Total/NA

Prep Batch: 312108

Client Sample ID: Method Blank

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-312108/1-A **Matrix: Water** Analysis Batch: 312271

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	ND		2.0	0.75	ng/L		08/02/19 10:31	08/03/19 14:17	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	1.3	ng/L		08/02/19 10:31	08/03/19 14:17	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.87	ng/L		08/02/19 10:31	08/03/19 14:17	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.65	ng/L		08/02/19 10:31	08/03/19 14:17	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.80	ng/L		08/02/19 10:31	08/03/19 14:17	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.92	ng/L		08/02/19 10:31	08/03/19 14:17	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOA	103		25 - 150				08/02/19 10:31	08/03/19 14:17	1
13C4 PFOS	100		25 - 150				08/02/19 10:31	08/03/19 14:17	1
18O2 PFHxS	106		25 - 150				08/02/19 10:31	08/03/19 14:17	1
13C5 PFNA	99		25 - 150				08/02/19 10:31	08/03/19 14:17	1
13C4 PFHpA	105		25 - 150				08/02/19 10:31	08/03/19 14:17	1
13C3 PFBS	101		25 - 150				08/02/19 10:31	08/03/19 14:17	1

Lab Sample ID: LCS 320-312108/2-A **Matrix: Water** Analysis Batch: 312271

,	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorooctanoic acid (PFOA)	20.0	18.1		ng/L		91	70 - 140
Perfluorooctanesulfonic acid (PFOS)	18.6	15.2		ng/L		82	69 - 144
Perfluorohexanesulfonic acid (PFHxS)	18.2	15.3		ng/L		84	73 - 157
Perfluorononanoic acid (PFNA)	20.0	19.1		ng/L		96	73 - 147
Perfluoroheptanoic acid (PFHpA)	20.0	18.6		ng/L		93	71 - 138
Perfluorobutanesulfonic acid (PFBS)	17.7	16.0		ng/L		91	72 - 151

	200	200	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFOA	103		25 - 150
13C4 PFOS	107		25 - 150
18O2 PFHxS	110		25 - 150
13C5 PFNA	93		25 - 150
13C4 PFHpA	100		25 - 150
13C3 PFBS	103		25 - 150

100 100

Lab Sample ID: LCSD 320-312108/3-A Matrix: Water Analysis Batch: 312271

Analysis Batch: 312271							Prep Ba	tch: 31	12108
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorooctanoic acid (PFOA)	20.0	18.7		ng/L		94	70 - 140	3	30
Perfluorooctanesulfonic acid (PFOS)	18.6	15.6		ng/L		84	69 - 144	2	30
Perfluorohexanesulfonic acid (PFHxS)	18.2	16.6		ng/L		91	73 - 157	8	30
Perfluorononanoic acid (PFNA)	20.0	19.8		ng/L		99	73 - 147	4	30
Perfluoroheptanoic acid (PFHpA)	20.0	18.8		ng/L		94	71 - 138	1	30

Eurofins TestAmerica, Sacramento

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 312108

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Method: WS-LC-0025 At1 - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320 Matrix: Water	0-312108/3-A	L .			C	Client Sa	ample	ID: Lat	Control Prep Ty	Sample pe: Tot	e Dup al/NA
Analysis Batch: 312271									Prep Ba	atch: 31	2108
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanesulfonic acid (PFBS)			17.7	16.0		ng/L		90	72 - 151	0	30
	LCSD	LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C4 PFOA	111		25 - 150								
13C4 PFOS	111		25 - 150								
18O2 PFHxS	113		25 - 150								
13C5 PFNA	91		25 - 150								
13C4 PFHpA	106		25 - 150								
_13C3 PFBS	109		25 - 150								

Eurofins TestAmerica, Sacramento

Prep Type

Total/NA

Matrix

Water

Method

PFAS Prep

Client Sample ID

AKNPW-018

AKNPW-012

AKNPW-011

AKNPW-111

AKNPW-424

AKNPW-422

AKNPW-208

AKNPW-005

AKNPW-007

AKNPW-008

Method Blank

Lab Control Sample

Lab Control Sample Dup

LCMS

Prep Batch: 312108

Lab Sample ID

320-52782-1

320-52782-2

320-52782-3

320-52782-4

320-52782-5

320-52782-6

320-52782-7

320-52782-8

320-52782-9

320-52782-10

MB 320-312108/1-A

LCS 320-312108/2-A

LCSD 320-312108/3-A

Prep Batch

12 13

15

	8
	9

Analysis Batch: 312271

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
320-52782-1	AKNPW-018	Total/NA	Water	WS-LC-0025	312108	
320-52782-2	AKNPW-012	Total/NA	Water	At1 WS-LC-0025 At1	312108	
320-52782-3	AKNPW-011	Total/NA	Water	WS-LC-0025 At1	312108	
320-52782-4	AKNPW-111	Total/NA	Water	WS-LC-0025 At1	312108	
320-52782-5	AKNPW-424	Total/NA	Water	WS-LC-0025 At1	312108	
320-52782-6	AKNPW-422	Total/NA	Water	WS-LC-0025 At1	312108	
320-52782-7	AKNPW-208	Total/NA	Water	WS-LC-0025 At1	312108	
320-52782-8	AKNPW-005	Total/NA	Water	WS-LC-0025 At1	312108	
320-52782-9	AKNPW-007	Total/NA	Water	WS-LC-0025 At1	312108	
320-52782-10	AKNPW-008	Total/NA	Water	WS-LC-0025 At1	312108	
MB 320-312108/1-A	Method Blank	Total/NA	Water	WS-LC-0025 At1	312108	
LCS 320-312108/2-A	Lab Control Sample	Total/NA	Water	WS-LC-0025 At1	312108	
LCSD 320-312108/3-A	Lab Control Sample Dup	Total/NA	Water	WS-LC-0025 At1	312108	

11/6/2019 (Rev. 1)

Client Sample ID: AKNPW-018 Date Collected: 07/24/19 15:45 Date Received: 07/30/19 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	312108	08/02/19 10:31	RDR	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			312271	08/03/19 15:12	P1N	TAL SAC
Client Samp	ole ID: AKI	NPW-012					L	ab Sample	ID: 320	-52782-2
Date Collected	d: 07/24/19 1	7:23							Ма	trix: Wate
Date Received	d: 07/30/19 0	8:55								
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	312108	08/02/19 10:31	RDR	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			312271	08/03/19 15:30	P1N	TAL SAC
Client Samp	ole ID: AKI	NPW-011					L	ab Sample	ID: 320	-52782-3
Date Collected	d: 07/24/19 1	6:32							Ма	trix: Wate
Date Received	d: 07/30/19 0	8:55								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Prep	PFAS Prep			1.00 mL	1.66 mL	312108	08/02/19 10:31	RDR	TAL SAC
Total/NA	•									

Client Sample ID: AKNPW-111 Date Collected: 07/24/19 16:00

Date Received: 07/30/19 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	312108	08/02/19 10:31	RDR	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			312271	08/03/19 16:07	P1N	TAL SAC

Client Sample ID: AKNPW-424 Date Collected: 07/25/19 15:14 Date Received: 07/30/19 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	312108	08/02/19 10:31	RDR	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			312271	08/03/19 16:26	P1N	TAL SAC

Client Sample ID: AKNPW-422 Date Collected: 07/25/19 14:23 Date Received: 07/30/19 08:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	312108	08/02/19 10:31	RDR	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			312271	08/03/19 16:44	P1N	TAL SAC

Lab Sample ID: 320-52782-6

Lab Sample ID: 320-52782-5

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 320-52782-1

5 6 10

Lab Sample ID: 320-52782-4 **Matrix: Water**

11/6/2019 (Rev. 1)

Client Sample ID: AKNPW-208 Date Collected: 07/25/19 13:27 Date Received: 07/30/19 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	312108	08/02/19 10:31	RDR	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			312271	08/03/19 17:03	P1N	TAL SAC
- Client Sam	ple ID: AKI	NPW-005					L	ab Sample	ID: 320	-52

Client Sample ID: AKNPW-005 Date Collected: 07/25/19 12:59 Date Received: 07/30/19 08:55

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	312108	08/02/19 10:31	RDR	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			312271	08/03/19 17:40	P1N	TAL SAC

Client Sample ID: AKNPW-007 Date Collected: 07/25/19 16:40 Date Received: 07/30/19 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared	A	1
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	
I otal/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	312108	08/02/19 10:31	RDR	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			312271	08/03/19 17:58	P1N	TAL SAC

Client Sample ID: AKNPW-008 Date Collected: 07/26/19 09:50 Date Received: 07/30/19 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PFAS Prep			1.00 mL	1.66 mL	312108	08/02/19 10:31	RDR	TAL SAC
Total/NA	Analysis	WS-LC-0025 At1		1			312271	08/03/19 18:17	P1N	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-52782-1

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 320-52782-7

Lab Sample ID: 320-52782-9

Lab Sample ID: 320-52782-10

Eurofins TestAmerica, Sacramento

Identification Number

17-020

L2468

L2468

2897

L2468.01

19-042-0

PH-0691

E87570

<cert No.>

200060

E-10375

2018009

CA000442020-1

T104704399-19-13

P330-18-00239

CA000442019-01

01944

9947

9947

2997

11666

4040

58448

CA00044

VT-4040

460278

C581

9930C

8TMS-L

68-01272

4040

Expiration Date

01-20-21

09-04-19

01-20-21

01-20-21

06-17-20

01-31-20

06-30-21

06-30-20

01-29-20

01-29-20

03-17-20

10-31-19

06-30-20

04-14-20

01-29-20

01-31-20

07-31-20

04-18-20

04-01-20

01-29-20

09-05-19

05-31-20

07-31-20

07-31-21

12-31-20

02-29-20

04-16-20

03-14-20

05-05-20

12-31-19

01-28-19 *

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Dept. of Defense ELAP

Dept. of Energy

ISO/IEC 17025

Program

State

State

State

State

State

State

NELAP

NELAP

NELAP

State

State

State

NELAP

NELAP

NELAP

NELAP

NELAP

Federal

NELAP

NELAP

State

State

State

State Program

US Federal Programs

US Federal Programs

State Program

NELAP

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Authority

ANAB

ANAB

ANAB

California

Florida

Georgia

Hawaii

Illinois

Kansas

Maine

Louisiana

Michigan

Michigan

Nevada

New York

Pennsylvania

US Fish & Wildlife

USEPA UCMR

Oregon

Texas

USDA

Utah

Vermont

Virginia

Washington

Wyoming

West Virginia (DW)

New Hampshire

Connecticut

Alaska (UST)

Arkansas DEQ

Laboratory: Eurofins TestAmerica, Sacramento

Job ID: 320-52782-1

8
9
11

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Method	Method Description	Protocol	Laboratory
WS-LC-0025 At1	Fluorinated Alkyl Substances	TAL-SAC	TAL SAC
PFAS Prep	Preparation, Direct Inject PFAS	TAL-SAC	TAL SAC

Protocol References:

TAL-SAC = TestAmerica Laboratories, West Sacramento, Facility Standard Operating Procedure.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: King Salmon Annual

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
320-52782-1	AKNPW-018	Water	07/24/19 15:45	07/30/19 08:55	
320-52782-2	AKNPW-012	Water	07/24/19 17:23	07/30/19 08:55	
320-52782-3	AKNPW-011	Water	07/24/19 16:32	07/30/19 08:55	
320-52782-4	AKNPW-111	Water	07/24/19 16:00	07/30/19 08:55	
320-52782-5	AKNPW-424	Water	07/25/19 15:14	07/30/19 08:55	
320-52782-6	AKNPW-422	Water	07/25/19 14:23	07/30/19 08:55	
320-52782-7	AKNPW-208	Water	07/25/19 13:27	07/30/19 08:55	
320-52782-8	AKNPW-005	Water	07/25/19 12:59	07/30/19 08:55	
320-52782-9	AKNPW-007	Water	07/25/19 16:40	07/30/19 08:55	
320-52782-10	AKNPW-008	Water	07/26/19 09:50	07/30/19 08:55	

Eurofins TestAmerica, Sacramento

GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road	CHAI	N-OF-CUSTODY	RECORD	aboratory Test America
(907) 479-0600		A	nalytical Methods (include presen	vative if used)
www.snannonwilson.com		. //	1 1 1 1	101
Turn Around Time:	Quote No:	6/		200 CONTRACT
Normal 🗌 Rush	J-Flags: X Yes No			NOS OCO
Please Specify		100		Remarks/Matrix
Sample Identity	Lab No. Time Sar	mpled R		Composition/Grab? Sample Containers
AKNPW-018.	1545 7/	24/19 X		2 GW
AKNPW-012	1723	X		2 GW
ALNPW-OIL .	1632			2 GW
AK NPW-111	1600			2 GW
AK NPW-424 .	1514 712	5/19 X		2 GW
AKNPW-422:	1423	X 320-52782 Chain	of Custody	2 GW
AKNPW-2081	1327	X		2 GW
AKNPW-005:	1259	X		2 GW
AKNPW-007.	1640	X		2 GW
AKNPW-008.	950 71	ZUAN X		2 GW
Project Information	Sample Receipt	Reliquished By: 1.	Reliquished By: 2.	Reliquished By: 3.
Number: 102582-003	Total No. of Containers:	Signature: Time: 10 16	Signature: Time:	Signature:
Name: Kiny Stoon Annual	COC Seals/Intact? Y/N/NA	1		
Contact: KRF	Received Good Cond./Cold	Printed Name: Date: 7/24/	Printed Name: Date:	Printed Name: Date:
Ongoing Project? Yes X No	Temp:	A. Masters		
Sampler: KRF	Delivery Method: Goldstreak	Share this a loc	Company:	Company:
No	tes:	Received By: 1.	Received By: 2.	Received By: 3.
please log with	10-year data hold	Fignature: 0. Time: 0755	Signature: Time:	Signature: Time:
	7	Printed Name: pate 30134/	Printed Name: Date:	Printed Name: Date:
Distribution: White - w/shipment - returne Yellow - w/shipment - for cor Pink - Shannon & Wilson - jo	ed to Shannon & Wilson w/ laboratory repor nsignee files bb file	ETAW Suc 4.6°	Company:	Company:

14

No. 36025

3.

Client: Shannon & Wilson, Inc

Login Number: 52782 List Number: 1 Creator: Thompson, Sarah W

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	job # 102582
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-52782-1

List Source: Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:

Brittany Blood

Title:

Environmental Professional I

Date:

November 26, 2019

CS Report Name:

King Salmon DOT&PF PFAS

Report Date:

November 6, 2019

Consultant Firm:

Shannon & Wilson, Inc.

Laboratory Name:

TestAmerica Laboratories, Inc.

Laboratory Report Number:

320-52782-1

ADEC File Number:

2569.38.033

Hazard Identification Number:

26981

- 1. Laboratory
 - a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

• Yes O No Comments:

The ADEC certified the TestAmerica Laboratories West Sacramento, CA location for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018. These compounds were included in the ADEC's Contaminated Sites Laboratory Approval 17-020.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

© Yes ⊙ No Comments:

Analyses were performed by TestAmerica Laboratories, Inc. in West Sacramento, CA.

2. Chain of Custody (CoC)

a. CoC information completed, signed, and dated (including released/received by)?

Yes	🔿 No	Comments:

b. Correct Analyses requested?

• Yes O No

Comments:

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes	🔿 No	Comments:

The temperature blank was measured within the acceptable temperature range of 0° C to 6° C upon receipt at the laboratory.

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

• Yes • No Comments:

Analysis of PFAS compounds does not require chemical preservation.

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

• Yes • No Comments:

The sample receipt form notes that the samples were received in good condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

○ Yes ^{(®} No Comments:

There were no discrepancies noted in the sample receipt documentation.

e. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

- 4. <u>Case Narrative</u>
 - a. Present and understandable?

• Yes • No Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

• Yes • No Comments:

The samples arrived in good condition and properly preserved. The temperature of the sample cooler received with this shipment was 4.6 ° C upon arrival at the laboratory.

The case narrative notes that there was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with preparation batches 320-312108.

c. Were all corrective actions documented?

○ Yes No Comments:

No corrective actions were documented in the case narrative.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The case narrative does not note an effect on data quality.

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

• Yes O No

Comments:

b. All applicable holding times met?

• Yes • No Comments:

The laboratory indicates that the water samples were analyzed using direct injection and in-line analysis. The 28-day hold time for analysis using direct aqueous injection (DAI) was met for all samples.

- c. All soils reported on a dry weight basis?
 - Yes ⊙ No Comments:

N/A; soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

• Yes • No

Comments:

The LOQ, equivalent to the TestAmerica Reporting Limit (RL), is less than the applicable ADEC regulatory limits for drinking water and soil.

e. Data quality or usability affected?

○ Yes ⊙ No Comments:

The data quality and/or usability are not affected.

6. <u>QC Samples</u>

a. Method Blank

i. One method blank reported per matrix, analysis and 20 samples?

• Yes • No Comments:

ii. All method blank results less than limit of quantitation (LOQ)?

• Yes • No

Comments:

iii. If above LOQ, what samples are affected?

Comments:

None; PFAS compounds were not detected in the method blank samples.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

No samples are affected; therefore, qualification of the results was not required.

v. Data quality or usability affected?

Comments:

The data quality and/or usability are not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

• Yes • No Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

© Yes [●] No Comments:

N/A; metals and/or inorganics were not analyzed as part of this work order.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

💿 Yes 🔿 No	Comments:
------------	-----------

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

• Yes • No Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

None; analytical accuracy and precision were demonstrated to be within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

○ Yes ⓒ No Comments:

Qualification of the data was not required; see above.

320-52782-1

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability are not affected.

c. Surrogates – Organics Only

i. Are surrogate recoveries reported for organic analyses - field, QC and laboratory samples?

• Yes • No Comments:

The analytical method WS-LC-0025 uses IDA recovery, which entails adding a 13C-isotope of each target analyte, and assessing the recovery of each analyte. The isotopically-labeled compounds are discussed as surrogates for this method.

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

• Yes • No Comments:

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

O Yes O No

Comments:

N/A; there were no IDA recovery failures associated with this work order.

iv. Data quality or usability affected?

Comments:

The data quality and usability are not affected; see above.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples?

(If not, enter explanation below.)

© Yes [€] No Comments:

PFAS are not volatile compounds; therefore, a trip blank is not required.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

O Yes O No

Comments:

N/A; a trip blank is not required.

iii. All results less than LOQ?

🔿 Yes 💿 No

Comments:

N/A; a trip blank is not required.

iv. If above LOQ, what samples are affected?

Comments:

None; a trip blank was not submitted with this work order.

v. Data quality or usability affected?

Comments:

The data quality and/or usability are not affected; see above.

- e. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

• Yes O No Comments:

ii. Submitted blind to lab?

🖲 Yes ု No

Comments:

The field duplicate pair AKNPW-011 / AKNPW-111 was submitted with this work order.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$

> Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes O No

Comments:

The relative precision demonstrated between the detected PFAS results of the field duplicate samples was within the recommended DQO of 30% for all analytes.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

The data quality and/or usability is not affected; see above.

f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).

○ Yes ○ No ⊙ Not Applicable

Samples for this project are not collected with reusable equipment, therefore a practical potential for equipment based cross-contamination does not exist.

i. All results less than LOQ?

• Yes • No Comments:

N/A; an equipment blank was not submitted with this work order.

ii. If above LOQ, what samples are affected?

Comments:

None; see above.

iii. Data quality or usability affected?

Comments:

The data quality and usability were not affected; see above.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

🔿 Yes 🛛 💿 No

Comments:

There were no additional flags/qualifiers required for this work order.

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-55873-1

Client Project/Site: KingSalmonP

For:

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Authorized for release by: 11/15/2019 1:16:10 PM

David Alltucker, Project Manager I (916)374-4383 david.alltucker@testamericainc.com

I AC and 2000 TNI requirements for accredited

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	17
Lab Chronicle	18
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

3

Qualifiers

LCMS

Qualifier

Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 320-55873-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-55873-1

Receipt

The samples were received on 10/31/2019 12:20 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.3° C.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 537.1 DW: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-337675.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.
Detection Summary

Client: Shannon & Wilson, Inc Project/Site: KingSalmonP

Client Sample ID: AKNPW-003

5

Lab Sample ID: 320-55873-1

Lab Sample ID: 320-55873-2

Lab Sample ID: 320-55873-3

Lab Sample ID: 320-55873-4

Lab Sample ID: 320-55873-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.13		0.0017	0.00043	ug/L	1	_	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.018		0.0017	0.00043	ug/L	1		537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.085		0.0017	0.00043	ug/L	1		537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.058		0.0017	0.00043	ug/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.10		0.0017	0.00043	ug/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.0020		0.0017	0.00043	ug/L	1		537.1 DW	Total/NA
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	0.00046	J	0.0017	0.00043	ug/L	1		537.1 DW	Total/NA

Client Sample ID: AKNPW-007

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.0032		0.0016	0.00041	ug/L	1	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.0033		0.0016	0.00041	ug/L	1	537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.0025		0.0016	0.00041	ug/L	1	537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.00086	J	0.0016	0.00041	ug/L	1	537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.0024		0.0016	0.00041	ug/L	1	537.1 DW	Total/NA

Client Sample ID: AKNPW-008

_		_							
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type	
Perfluorohexanoic acid (PFHxA)	0.0035		0.0018	0.00046	ug/L	1	537.1 DW	Total/NA	
Perfluoroheptanoic acid (PFHpA)	0.00064	J	0.0018	0.00046	ug/L	1	537.1 DW	Total/NA	
Perfluorooctanoic acid (PFOA)	0.0026		0.0018	0.00046	ug/L	1	537.1 DW	Total/NA	
Perfluorobutanesulfonic acid (PFBS)	0.0013	J	0.0018	0.00046	ug/L	1	537.1 DW	Total/NA	
Perfluorohexanesulfonic acid (PFHxS)	0.0014	J	0.0018	0.00046	ug/L	1	537.1 DW	Total/NA	
9-Chlorohexadecafluoro-3-oxanonan	0.00083	J	0.0018	0.00046	ug/L	1	537.1 DW	Total/NA	

e-1-sulfonic acid (9CI-PF3O

Client Sample ID: AKNPW-011

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.0036		0.0017	0.00042	ug/L	1	_	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.00070	J	0.0017	0.00042	ug/L	1		537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.0042		0.0017	0.00042	ug/L	1		537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.00054	J	0.0017	0.00042	ug/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.0017		0.0017	0.00042	ug/L	1		537.1 DW	Total/NA

Client Sample ID: AKNPW-012

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.011	0.0016	0.00041	ug/L	1	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.0026	0.0016	0.00041	ug/L	1	537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.016	0.0016	0.00041	ug/L	1	537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.0020	0.0016	0.00041	ug/L	1	537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.0080	0.0016	0.00041	ug/L	1	537.1 DW	Total/NA
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	0.00055 J	0.0016	0.00041	ug/L	1	537.1 DW	Total/NA

Client Sample ID: AKNPW-103

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.13		0.0017	0.00043	ug/L	1	_	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.019		0.0017	0.00043	ug/L	1		537.1 DW	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Lab Sample ID: 320-55873-6

Detection Summary

Client: Shannon & Wilson, Inc Project/Site: KingSalmonP

Client Sample ID: AKNPW-103 (Continued)

Lab Sample ID: 320-55873-6

Job ID: 320-55873-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	0.083		0.0017	0.00043	ug/L	1	_	537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.058		0.0017	0.00043	ug/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.098		0.0017	0.00043	ug/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.0019		0.0017	0.00043	ug/L	1		537.1 DW	Total/NA

This Detection Summary does not include radiochemical test results.

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: AKNPW-003 Date Collected: 10/29/19 10:38 Date Received: 10/31/19 12:20

Lab Sample ID: 320-55873-1

Matrix: Water

5

Method: 537.1 DW - Perfluorin	ated Alkyl	Acids (LC/	MS)	МП	Unit	П	Proparad	Analyzod	Dil Eac	5
Borfluoroboxanoic acid (BEHxA)	0.12	Quaimer	0.0017	0.00043			11/11/19 14:00	11/14/19 09:17		J
Perfluerobentancia acid (PEHnA)	0.13		0.0017	0.00043	ug/L		11/11/10 14:00	11/14/10 00:17	1	6
Perfluere estencie esid (PEOA)	0.010		0.0017	0.00043	ug/L		11/11/10 14:00	11/14/19 09:17	1	Ο
Perfluerononono coid (DENA)	0.005		0.0017	0.00043	ug/L		11/11/10 14:00	11/14/19 09:17		
			0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09.17	1	
	ND		0.0017	0.00043	ug/L		11/11/19 14.00	11/14/19 09.17	1	
Perfluoroundecanoic acid (PFUnA)	ND		0.0017	0.00044	ug/L		11/11/19 14:00	11/14/19 09:17	1	8
Perfluorododecanoic acid (PFDoA)	ND		0.0017	0.00053	ug/L		11/11/19 14:00	11/14/19 09:17	1	
Perfluorotridecanoic acid (PFTriA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:17	1	9
Perfluorotetradecanoic acid (PFTeA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:17	1	
Perfluorobutanesulfonic acid (PFBS)	0.058		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:17	1	
Perfluorohexanesulfonic acid (PFHxS)	0.10		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:17	1	
Perfluorooctanesulfonic acid (PFOS)	0.0020		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:17	1	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:17	1	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:17	1	13
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:17	1	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:17	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	0.00046	J	0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:17	1	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:17	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C2 PFHxA	98		70 - 130				11/11/19 14:00	11/14/19 09:17	1	
13C2 PFDA	109		70 - 130				11/11/19 14:00	11/14/19 09:17	1	

70 - 130

70 - 130

101

80

11/11/19 14:00 11/14/19 09:17

11/11/19 14:00 11/14/19 09:17

1

Client Sample ID: AKNPW-007 Date Collected: 10/29/19 14:37 Date Received: 10/31/19 12:20

Lab Sample ID: 320-55873-2 Matrix: Water

Matrix: Water

Analyte	Result Q	Jualifier	S) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Perfluorohexanoic acid (PFHxA)	0.0032		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
Perfluoroheptanoic acid (PFHpA)	0.0033		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	6
Perfluorooctanoic acid (PFOA)	0.0025		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
Perfluorononanoic acid (PFNA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
Perfluorodecanoic acid (PFDA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
Perfluoroundecanoic acid (PFUnA)	ND		0.0016	0.00042	ug/L		11/11/19 14:00	11/14/19 09:25	1	0
Perfluorododecanoic acid (PFDoA)	ND		0.0016	0.00051	ug/L		11/11/19 14:00	11/14/19 09:25	1	0
Perfluorotridecanoic acid (PFTriA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
Perfluorotetradecanoic acid (PFTeA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	9
Perfluorobutanesulfonic acid (PFBS)	0.00086 J		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
Perfluorohexanesulfonic acid (PFHxS)	0.0024		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
Perfluorooctanesulfonic acid (PFOS)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	13
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	11
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 09:25	1	
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C2 PFHxA	104		70 - 130				11/11/19 14:00	11/14/19 09:25	1	
13C2 PFDA	102		70 - 130				11/11/19 14:00	11/14/19 09:25	1	
d5-NEtFOSAA	91		70 - 130				11/11/19 14:00	11/14/19 09:25	1	
13C3 HFPO-DA	81		70 - 130				11/11/19 14:00	11/14/19 09:25	1	

Client Sample ID: AKNPW-008 Date Collected: 10/29/19 13:30 Date Received: 10/31/19 12:20

Lab Sample ID: 320-55873-3 Matrix: Water

Method: 537.1 DW - Perfluorin	ated Alkyl	Acids (LC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.0035		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
Perfluoroheptanoic acid (PFHpA)	0.00064	J	0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
Perfluorooctanoic acid (PFOA)	0.0026		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
Perfluorononanoic acid (PFNA)	ND		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
Perfluorodecanoic acid (PFDA)	ND		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
Perfluoroundecanoic acid (PFUnA)	ND		0.0018	0.00047	ug/L		11/11/19 14:00	11/14/19 09:33	1
Perfluorododecanoic acid (PFDoA)	ND		0.0018	0.00057	ug/L		11/11/19 14:00	11/14/19 09:33	1
Perfluorotridecanoic acid (PFTriA)	ND		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
Perfluorobutanesulfonic acid	0.0013	J	0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
Perfluorohexanesulfonic acid (PFHxS)	0.0014	J	0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
N-methylperfluorooctanesulfonamidoa	ND		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
9-Chlorohexadecafluoro-3-oxano nane-1-sulfonic acid (9CI-PF3O	0.00083	J	0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.0018	0.00046	ug/L		11/11/19 14:00	11/14/19 09:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	103		70 - 130				11/11/19 14:00	11/14/19 09:33	1
13C2 PFDA	104		70 - 130				11/11/19 14:00	11/14/19 09:33	1
d5-NEtFOSAA	108		70 - 130				11/11/19 14:00	11/14/19 09:33	1
13C3 HFPO-DA	89		70 - 130				11/11/19 14:00	11/14/19 09:33	1

Client Sample ID: AKNPW-011 Date Collected: 10/29/19 15:42 Date Received: 10/31/19 12:20

Lab Sample ID: 320-55873-4

Matrix: Water

Method: 537.1 DW - Perfluorin	ated Alkyl	Acids (LC/	MS)	MDI	11	-	Duenened	Amelynned		
	Result	Qualifier	RL -		Unit	D	Prepared			0
Perfluoronexanoic acid (PFHXA)	0.0036		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	
Perfluoroheptanoic acid (PFHpA)	0.00070	J	0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	6
Perfluorooctanoic acid (PFOA)	0.0042		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	
Perfluorononanoic acid (PFNA)	ND		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	
Perfluorodecanoic acid (PFDA)	ND		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	
Perfluoroundecanoic acid (PFUnA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 09:41	1	8
Perfluorododecanoic acid (PFDoA)	ND		0.0017	0.00052	ug/L		11/11/19 14:00	11/14/19 09:41	1	
Perfluorotridecanoic acid (PFTriA)	ND		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	0
Perfluorotetradecanoic acid (PFTeA)	ND		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	3
Perfluorobutanesulfonic acid (PFBS)	0.00054	J	0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	
Perfluorohexanesulfonic acid (PFHxS)	0.0017		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	
Perfluorooctanesulfonic acid (PFOS)	ND		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	1:
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.0017	0.00042	ug/L		11/11/19 14:00	11/14/19 09:41	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C2 PFHxA	101		70 - 130				11/11/19 14:00	11/14/19 09:41	1	
13C2 PFDA	107		70 - 130				11/11/19 14:00	11/14/19 09:41	1	
d5-NEtFOSAA	98		70 - 130				11/11/19 14:00	11/14/19 09:41	1	
13C3 HFPO-DA	74		70 - 130				11/11/19 14:00	11/14/19 09:41	1	

Client Sample ID: AKNPW-012 Date Collected: 10/29/19 17:05 Date Received: 10/31/19 12:20

Lab Sample ID: 320-55873-5

Matrix: Water

Method: 537.1 DW - Pertiuorir	1ated Alkyl / Result	ACIOS (LC/ Qualifier	NIS) RI	мы	Unit	п	Prenared	Analyzed	Dil Fac	5
Perfluorobexanoic acid (PEHxA)	0.011	guainer	0.0016	0 00041			11/11/19 14:00	11/14/19 10:13	1	
Perfluorobentanoic acid (PEHnA)	0.0026		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	6
Perfluorooctanoic acid (PEOA)	0.0020		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	U
Perfluorononanoic acid (PENA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13		
Perfluorodecanoic acid (PEDA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	
Perfluoroundecanoic acid (PELInA)			0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	
Perfluorododecanoic acid (PEDoA)			0.0016	0.00042	ug/L		11/11/10 14:00	11/14/10 10:13		B
Porfluorotridocapoia acid (PETriA)			0.0016	0.00031	ug/L		11/11/10 14:00	11/14/19 10:13	1	
			0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10.13	1	9
			0.0010	0.00041	uy/L		11/11/19 14:00	11/14/19 10.13		
(PFBS)	0.0020		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	
Perfluorohexanesulfonic acid (PFHxS)	0.0080		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	
Perfluorooctanesulfonic acid (PFOS)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	0.00055	J	0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	13
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	14
11-Chloroeicosafluoro-3-oxaundecan	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.0016	0.00041	ug/L		11/11/19 14:00	11/14/19 10:13	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C2 PFHxA	106		70 - 130				11/11/19 14:00	11/14/19 10:13	1	
13C2 PFDA	109		70 - 130				11/11/19 14:00	11/14/19 10:13	1	
d5-NEtFOSAA	100		70 - 130				11/11/19 14:00	11/14/19 10:13	1	
13C3 HFPO-DA	91		70 - 130				11/11/19 14:00	11/14/19 10:13	1	

13C3 HFPO-DA

Client Sample ID: AKNPW-103 Date Collected: 10/29/19 10:58 Date Received: 10/31/19 12:20

Lab Sample ID: 320-55873-6

Matrix: Water

5

Method: 537.1 DW - Perfluorin Analyte	nated Alkyl A Result	Cids (LC/	VIS) RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac	5
Perfluorohexanoic acid (PFHxA)	0.13		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	
Perfluoroheptanoic acid (PFHpA)	0.019		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	6
Perfluorooctanoic acid (PFOA)	0.083		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	
Perfluorononanoic acid (PFNA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	
Perfluorodecanoic acid (PFDA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	
Perfluoroundecanoic acid (PFUnA)	ND		0.0017	0.00044	ug/L		11/11/19 14:00	11/14/19 10:21	1	0
Perfluorododecanoic acid (PFDoA)	ND		0.0017	0.00053	ug/L		11/11/19 14:00	11/14/19 10:21	1	0
Perfluorotridecanoic acid (PFTriA)	ND		0.0017	0.00043	ua/L		11/11/19 14:00	11/14/19 10:21	1	
Perfluorotetradecanoic acid (PFTeA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	9
Perfluorobutanesulfonic acid (PFBS)	0.058		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	
Perfluorohexanesulfonic acid (PFHxS)	0.098		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	
Perfluorooctanesulfonic acid (PFOS)	0.0019		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	12
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	13
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.0017	0.00043	ug/L		11/11/19 14:00	11/14/19 10:21	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C2 PFHxA	102		70 - 130				11/11/19 14:00	11/14/19 10:21	1	
13C2 PFDA	100		70 - 130				11/11/19 14:00	11/14/19 10:21	1	
d5-NEtFOSAA	90		70 - 130				11/11/19 14:00	11/14/19 10:21	1	

70 - 130

88

11/11/19 14:00 11/14/19 10:21

Surrogate Summary

Job ID: 320-55873-1

Prep Type: Total/NA

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) Matrix: Water

			P	ercent Surro	ogate Reco
		PFHxA	PFDA	-NEtFOS/	HFPODA
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)
320-55873-1	AKNPW-003	98	109	101	80
320-55873-2	AKNPW-007	104	102	91	81
320-55873-3	AKNPW-008	103	104	108	89
320-55873-4	AKNPW-011	101	107	98	74
320-55873-5	AKNPW-012	106	109	100	91
320-55873-6	AKNPW-103	102	100	90	88
LLCS 320-337675/2-A	Lab Control Sample	109	108	98	80
LLCSD 320-337675/3-A	Lab Control Sample Dup	88	107	103	73
MB 320-337675/1-A	Method Blank	94	106	109	89

Surrogate Legend

PFHxA = 13C2 PFHxA PFDA = 13C2 PFDA d5-NEtFOSAA = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA

Eurofins TestAmerica, Sacramento

N-ethylperfluorooctanesulfonamidoac

9-Chlorohexadecafluoro-3-oxanonan

etic acid (NEtFOSAA)

d5-NEtFOSAA

Analyte

(PFUnA)

(PFDoA)

(PFTriA)

(PFTeA)

(PFBS)

13C3 HFPO-DA

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS)

Lab Sample ID: MB 320-337675/1-A **Matrix: Water**

Analysis Batch: 338388 MB MB Qualifier RL MDL Unit Prepared Analyte Result D 0.00050 ug/L 11/11/19 14:00 11/14/19 08:37 Perfluorohexanoic acid (PFHxA) ND 0.0020 Perfluoroheptanoic acid (PFHpA) ND 0.0020 0.00050 ug/L 11/11/19 14:00 11/14/19 08:37 Perfluorooctanoic acid (PFOA) ND 0.0020 0.00050 ug/L 11/11/19 14:00 11/14/19 08:37 Perfluorononanoic acid (PFNA) ND 0.0020 0.00050 ug/L 11/11/19 14:00 11/14/19 08:37 Perfluorodecanoic acid (PFDA) ND 0.0020 0.00050 ug/L 11/11/19 14:00 11/14/19 08:37 Perfluoroundecanoic acid (PFUnA) ND 0.0020 0.00051 ug/L 11/11/19 14:00 11/14/19 08:37 Perfluorododecanoic acid (PFDoA) ND 0.0020 0.00062 ug/L 11/11/19 14:00 11/14/19 08:37 Perfluorotridecanoic acid (PFTriA) ND 0.0020 0.00050 ug/L 11/11/19 14:00 11/14/19 08:37 Perfluorotetradecanoic acid (PFTeA) ND 0.0020 0.00050 ug/L 11/11/19 14:00 11/14/19 08:37 Perfluorobutanesulfonic acid (PFBS) ND 0.0020 0.00050 ug/L 11/11/19 14:00 11/14/19 08:37 Perfluorohexanesulfonic acid (PFHxS) 0.00050 ug/L ND 0.0020 11/11/19 14:00 11/14/19 08:37 Perfluorooctanesulfonic acid (PFOS) ND 0.0020 0.00050 ug/L 11/11/19 14:00 11/14/19 08:37 N-methylperfluorooctanesulfonamidoa ND 0.0020 0.00050 ug/L 11/11/19 14:00 11/14/19 08:37 cetic acid (NMeFOSAA)

ND

ND

109

89

e-1-sulfonic acid (9CI-PF3O								
11-Chloroeicosafluoro-3-oxaundecan	ND		0.0020	0.00050 i	ug/L	11/11/19 14:00	11/14/19 08:37	1
e-1-sulfonic acid (11CI-PF								
Hexafluoropropylene Oxide Dimer	ND		0.0020	0.00050 ι	ug/L	11/11/19 14:00	11/14/19 08:37	1
Acid (HFPO-DA)								
4,8-Dioxa-3H-perfluorononanoic acid	ND		0.0020	0.00050 ι	ug/L	11/11/19 14:00	11/14/19 08:37	1
(ADONA)								
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C2 PFHxA	94		70 - 130			11/11/19 14:00	11/14/19 08:37	1
13C2 PFDA	106		70 - 130			11/11/19 14:00	11/14/19 08:37	1

70 - 130

70 - 130

Spike

Added

0.00400

0.00400

0 00400

0.00400

0.00354

0.0020

0.0020

0.00050 ug/L

0.00050 ug/L

Lab Sample ID: LLCS 320-337675/2-A **Matrix: Water** Analysis Batch: 338390

Perfluorohexanoic acid (PFHxA)

Perfluoroheptanoic acid (PFHpA)

Perfluorooctanoic acid (PFOA)

Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid

Perfluorododecanoic acid

Perfluorotridecanoic acid

Perfluorotetradecanoic acid

Perfluorobutanesulfonic acid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec

99

105

106

94

D

%Rec.

Limits

50 - 150

50 - 150

50 - 150

11/11/19 14:00 11/14/19 08:37

11/11/19 14:00 11/14/19 08:37

11/11/19 14:00 11/14/19 08:37

11/11/19 14:00 11/14/19 08:37

Prep Batch: 337675

0.00100	0.00121	ug/L	100	00 - 100	
0.00401	0.00406	ug/L	101	50 - 150	
0.00400	0.00402	ug/L	101	50 ₋ 150	
0.00400	0.00388	ug/L	97	50 - 150	
0.00402	0.00371	ug/L	92	50 ₋ 150	
0.00400	0.00386	ug/L	96	50 - 150	

Unit

ug/L

ug/L

ua/l

ug/L

LLCS LLCS

0.00397

0.00420

0 00424

0.00375

0.00329

Result Qualifier

ug/L 93

50 - 150

50 - 150

Eurofins TestAmerica, Sacramento

Analyzed

Job ID: 320-55873-1

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

80

Lab Sample ID: LLCS 320- Matrix: Water Analysis Batch: 338390	-337675/2-A				Clie	ent Sai	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 337675
· ·····, ···· · · · · · · · · · · · · ·			Spike	LLCS LLCS				%Rec.
Analyte			Added	Result Qualifier	Unit	D	%Rec	Limits
Perfluorohexanesulfonic acid			0.00364	0.00378	ug/L		104	50 - 150
Perfluorooctanesulfonic acid			0.00371	0.00364	ug/L		98	50 - 150
(PFOS) N-methylperfluorooctanesulfona midoacetic acid (NMeEOSAA)			0.00400	0.00357	ug/L		89	50 - 150
N-ethylperfluorooctanesulfonami			0.00400	0.00382	ug/L		96	50 - 150
9-Chlorohexadecafluoro-3-oxan			0.00373	0.00334	ug/L		90	50 - 150
11-Chloroeicosafluoro-3-oxaund			0.00377	0.00325	ug/L		86	50 - 150
ecane-1-sulfonic acid (11CI-PF Hexafluoropropylene Oxide			0.00400	0.00409	ug/L		102	50 - 150
Dimer Acid (HFPO-DA) 4,8-Dioxa-3H-perfluorononanoic acid (ADONA)			0.00377	0.00415	ug/L		110	50 - 150
	LLCS	LLCS						
Surrogate	%Recovery	Qualifier	Limits					
13C2 PFHxA	109		70 - 130					
13C2 PFDA	108		70 - 130					
d5-NEtFOSAA	98		70 - 130					

70 - 130

Lab Sample ID: LLCSD 320-337675/3-A **Matrix: Water**

13C3 HFPO-DA

Analyte

(PFUnA)

(PFTriA)

(PFTeA)

(PFBS)

(PFHxS)

(PFOS)

doacetic acid (NEtFOSAA)

9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid (9CI-PF3O

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 338390 **Prep Batch: 337675** Spike LLCSD LLCSD %Rec. RPD Added **Result Qualifier** Unit D %Rec Limits RPD Limit Perfluorohexanoic acid (PFHxA) 0.00400 0.00318 80 50 - 150 22 ug/L Perfluoroheptanoic acid (PFHpA) 0.00400 0.00386 ug/L 97 50 - 150 8 0.00431 Perfluorooctanoic acid (PFOA) 0.00400 ug/L 108 50 - 150 2 Perfluorononanoic acid (PFNA) 0.00401 97 50 - 150 0.00390 ug/L 4 Perfluorodecanoic acid (PFDA) 0.00400 0.00390 97 50 - 150 3 ug/L 0.00400 0.00385 96 50 - 150 Perfluoroundecanoic acid ug/L 0.7 7 0.00402 0.00399 99 ug/L 50 - 150 Perfluorododecanoic acid (PFDoA) 0.00400 0.00393 ug/L 98 50 - 150 2 Perfluorotridecanoic acid 0.00400 0.00392 98 50 - 150 4 Perfluorotetradecanoic acid ug/L 0.00354 0.00228 ug/L 64 50 - 150 36 Perfluorobutanesulfonic acid 0.00364 0.00353 7 ug/L 97 50 - 150 Perfluorohexanesulfonic acid 0.00371 0.00358 ug/L 96 50 - 150 2 Perfluorooctanesulfonic acid 0.00377 0.00400 ug/L 94 50 - 150 6 N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonami 0.00400 0.00387 ug/L 97 50 - 150 1

Eurofins TestAmerica, Sacramento

50 - 150

89

0.00333

ug/L

0.00373

0.2

50

50

50

50

50

50

50

50

50

50

50

50

50

50

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LLCSD 32 Matrix: Water Analysis Batch: 338390	0-337675/3-	Α			C	Client Sa	ample	ID: Lat	ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 337675			
·			Spike	LLCSD	LLCSD				%Rec.		RPD	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid (11Cl-PF			0.00377	0.00340		ug/L		90	50 - 150	4	50	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)			0.00400	0.00326		ug/L		81	50 - 150	23	50	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)			0.00377	0.00388		ug/L		103	50 ₋ 150	7	50	
	LLCSD	LLCSD										
Surrogate	%Recovery	Qualifier	Limits									
13C2 PFHxA	88		70 - 130									
13C2 PFDA	107		70 - 130									
d5-NEtFOSAA	103		70_130									
13C3 HFPO-DA	73		70 - 130									

2 3 4 5 6 7 8

9

LCMS	

Prep Batch: 337675

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-55873-1	AKNPW-003	Total/NA	Water	537.1 DW	
320-55873-2	AKNPW-007	Total/NA	Water	537.1 DW	
320-55873-3	AKNPW-008	Total/NA	Water	537.1 DW	
320-55873-4	AKNPW-011	Total/NA	Water	537.1 DW	
320-55873-5	AKNPW-012	Total/NA	Water	537.1 DW	
320-55873-6	AKNPW-103	Total/NA	Water	537.1 DW	
MB 320-337675/1-A	Method Blank	Total/NA	Water	537.1 DW	
LLCS 320-337675/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	
LLCSD 320-337675/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	
Analysis Batch: 3383	88				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-55873-1	AKNPW-003	Total/NA	Water	537.1 DW	337675
320-55873-2	AKNPW-007	Total/NA	Water	537.1 DW	337675
320-55873-3	AKNPW-008	Total/NA	Water	537.1 DW	337675
320-55873-4	AKNPW-011	Total/NA	Water	537.1 DW	337675
MB 320-337675/1-A	Method Blank	Total/NA	Water	537.1 DW	337675
Analysis Batch: 3383	90				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-55873-5	AKNPW-012	Total/NA	Water	537.1 DW	337675
320-55873-6	AKNPW-103	Total/NA	Water	537.1 DW	337675
LLCS 320-337675/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	337675
LLCSD 320-337675/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	337675

Client Sample ID: AKNPW-003 Date Collected: 10/29/19 10:38 Date Received: 10/31/19 12:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			291.8 mL	10.00 mL	337675	11/11/19 14:00	DTH	TAL SAC
Total/NA	Analysis	537.1 DW		1			338388	11/14/19 09:17	JRB	TAL SAC

Client Sample ID: AKNPW-007 Date Collected: 10/29/19 14:37 Date Received: 10/31/19 12:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			305.3 mL	10.00 mL	337675	11/11/19 14:00	DTH	TAL SAC
Total/NA	Analysis	537.1 DW		1			338388	11/14/19 09:25	JRB	TAL SAC

Client Sample ID: AKNPW-008 Date Collected: 10/29/19 13:30

Date Received: 10/31/19 12:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			274.1 mL	10.00 mL	337675	11/11/19 14:00	DTH	TAL SAC
Total/NA	Analysis	537.1 DW		1			338388	11/14/19 09:33	JRB	TAL SAC

Client Sample ID: AKNPW-011

Date Collected: 10/29/19 15:42

Date Received: 10/31/19 12:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			295.8 mL	10.00 mL	337675	11/11/19 14:00	DTH	TAL SAC
Total/NA	Analysis	537.1 DW		1			338388	11/14/19 09:41	JRB	TAL SAC

Client Sample ID: AKNPW-012 Date Collected: 10/29/19 17:05 Date Received: 10/31/19 12:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			303.5 mL	10.00 mL	337675	11/11/19 14:00	DTH	TAL SAC
Total/NA	Analysis	537.1 DW		1			338390	11/14/19 10:13	JRB	TAL SAC

Client Sample ID: AKNPW-103 Date Collected: 10/29/19 10:58 Date Received: 10/31/19 12:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			291.9 mL	10.00 mL	337675	11/11/19 14:00	DTH	TAL SAC
Total/NA	Analysis	537.1 DW		1			338390	11/14/19 10:21	JRB	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 320-55873-1 Matrix: Water

Lab Sample ID: 320-55873-2

Lab Sample ID: 320-55873-3

Lab Sample ID: 320-55873-4

Lab Sample ID: 320-55873-5

Lab Sample ID: 320-55873-6

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Project/Site: KingSalmonP Job ID: 320-55873-1

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-20
Arkansas DEQ	State	19-042-0	06-17-20
California	State	2897	01-31-20
Colorado	State	CA0004	08-31-20
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-20
Georgia	State	4040	01-29-20
Hawaii	State	<cert no.=""></cert>	01-29-20
Illinois	NELAP	200060	03-17-20
Kansas	NELAP	E-10375	10-31-20 *
Louisiana	NELAP	01944	06-30-20
Maine	State	2018009	04-14-20
Michigan	State	9947	01-29-20
Michigan	State Program	9947	01-31-20
Nevada	State	CA000442020-1	07-31-20
New Hampshire	NELAP	2997	04-18-20
New Jersey	NELAP	CA005	06-30-20
New York	NELAP	11666	04-01-20
Oregon	NELAP	4040	01-29-20
Pennsylvania	NELAP	68-01272	03-31-20
Texas	NELAP	T104704399-19-13	05-31-20
US Fish & Wildlife	US Federal Programs	58448	07-31-20
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-29-20
Vermont	State	VT-4040	04-16-20
Virginia	NELAP	460278	03-14-20
Washington	State	C581	05-05-20
West Virginia (DW)	State	9930C	12-31-19
Wyoming	State Program	8TMS-L	01-28-19 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Client: Shannon & Wilson, Inc Project/Site: KingSalmonP

Method	Method Description	Protocol	Laboratory
537.1 DW	Perfluorinated Alkyl Acids (LC/MS)	EPA	TAL SAC
537.1 DW	Extraction of Perfluorinated Alkyl Acids	EPA	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: KingSalmonP

CHAI SHANNON & WILSON, INC. Geotechnical and Environmental Consultants 400 N 34th Street Suite 100 2043 Westport Center Drive 2705 Saint Andrews	N-OF-C	USTOD	Y RE	CORD)	Laborator Attn:	Test Americ avid All	ge_l_of_l 9/Eurofins tucker
Seattle, WA 98103 St. Louis, MO 63146-3564 Pasco, WA 99301-3: (206) 632-8020 (314) 699-9660 (509) 946-6309 2355 Hill Road 5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907) 479-0600 1321 Banpock Street, Suite 200 1321 Banpock Street, Suite 200	2000, Outo / 378	Analysis Parameters/Sample Container Description (include preservative if used)					7	
Lake Oswego, OR 97035 Denver, CO 80204 (503) 223-6147 (303) 825-3800 Sample Identity Lab No.	te corre co	2 2 2 S	//		//	105	NUTRIAN Rema	rks/Matrix
AKNPW-003 1038 102	119 1	\checkmark				2	Wat	er (Drinking)
AKN PN-007 1437	V	~				2		~ J
AKNPW-008 1330	V	~				2		
AKNPW-011 1542	V	V				3		1
AKN PW-012 1705	~	V				2		
AKNPW-103 1058		V				a	1	
320-55873 Chain of Custody								
Project Information Sample Receipt	Reline	quished By:	1.	Relinqu	ished By:	2.	Relinquish	ed By: 3.
Project Number: 102582-003 Total Number of Containers Project Name Ting Salmin P COC Seals/Intact? Y/N/NA Contact: KRF Received Good Cond./Cold	Printed Name	MaVorg Date 1	5 5 130/19 P	hignature: Alema Printed Name: Alena N	Digt	30Si 30/19Pr	gnature: inted Name:	Time:
Sampler: ADV (attach shipping hill if any)	Company:	nativil's	510 4	Shannat	Wilson	C	ompany:	
	Bacei	ved By:	1	Receive	d By:	2	Received F	av. 2
Requested Turnaround Time: STANDARD	Signature:	/ Time:]	220 S	ignature; //	Time: 12	20 Si	gnature:	Time:
Special Instructions: 18 PFAS by EPA 537.1	Printed Name Alen	a Voigt	130/19	Vinted Name:	Date 0/3	1/19 Pr	inted Name:	Date:
Distribution: White - w/shipment - returned to Shannon & Wilson w/ laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - Job File	Shar	inont-W	Ism	Sompany: STASAL		C	ompany:	
9-91/UR				2.	.70		No	34987
		<u>-</u>			10 9	∞	ი თ	

Page 22 of 23

11/15/2019

Client: Shannon & Wilson, Inc

Login Number: 55873 List Number: 1 Creator: Kovalyov, Nikita

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	gel packs
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-55873-1

List Source: Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:

Amber Masters

Title:

Environmental Scientist

Date:

11/25/019

Consultant Firm:

Shannon and Wilson, Inc.

Laboratory Name:

Eurofins TestAmerica Laboratories, Inc.

Laboratory Report Number:

320-55873-1

Laboratory Report Date:

11/15/2019

CS Site Name:

King Salmon DOT&PF PFAS

ADEC File Number:

2569.38.033

Hazard Identification Number:

Laboratory Report Date:

11/15/2019

CS Site Name:

King Salmon DOT&PF PFAS

Note: Any N/A or No box checked must have an explanation in the comments box.

1. <u>Laboratory</u>

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

Yes \boxtimes No \square N/A \square Comments:
The ADEC certified the TestAmerica Laboratories West Sacramento, CA location for the analysis of
perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018. These
compounds were included in the ADEC's Contaminated Sites Laboratory Approval 17-020.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate
laboratory, was the laboratory performing the analyses ADEC CS approved?

Yes \square No \square N/A \boxtimes Comments:

Samples were not transferred or sub-contracted to an alternate laboratory.

- 2. Chain of Custody (CoC)
 - a. CoC information completed, signed, and dated (including released/received by)?

Yes \boxtimes No \square N/A \square Comments:

b. Correct analyses requested?

3. Laboratory Sample Receipt Documentation

a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes \boxtimes No \square N/A \square Comments:

The temperature blank was measured within the acceptable temperature range of 0° C to 6° C upon receipt at the laboratory.

- b. Sample preservation acceptable acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
 - Yes \boxtimes No \square N/A \square Comments:

Samples were preserved with Trizma.

Laboratory Report Date:

11/15/2019

CS Site Name:

King Salmon DOT&PF PFAS

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

The sample receipt form notes that the samples were received in good condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \square No \boxtimes N/A \square Comments:

There were no discrepancies noted in the sample receipt documentation.

e. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

4. Case Narrative

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

The samples arrived in good condition and properly preserved. The temperature of the sample cooler received with this shipment was 2.3 ° C upon arrival at the laboratory.

The case narrative notes that there was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with preparation batch 320-337675.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

No corrective actions were documented in the case narrative.

Laboratory Report Date:

11/15/2019

CS Site Name:

King Salmon DOT&PF PFAS

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The case narrative does not note an effect on data quality.

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

N/A; soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \boxtimes No \square N/A \square Comments:

The LOQ, equivalent to the Eurofins TestAmerica Reporting Limit (RL), is less than the applicable ADEC regulatory limits for drinking water .

e. Data quality or usability affected?

The data quality and/or usability are not affected.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

11/15/2019

CS Site Name:

King Salmon DOT&PF PFAS

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

None; PFAS compounds were not detected in the method blank samples.

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

Samples are not affected; therefore, qualification of the results was not required

v. Data quality or usability affected?

Comments:

The data quality and/or usability are not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

N/A; metals and/or inorganics were not analyzed as part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

 $\underline{\text{Yes}} \boxtimes \text{No} \square \text{N/A} \square \qquad \text{Comments:}$

Laboratory Report Date:

11/15/2019

CS Site Name:

King Salmon DOT&PF PFAS

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

None; analytical accuracy and precision were demonstrated to be within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

Qualification of the data was not required; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability are not affected.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

Yes \square No \boxtimes N/A \square Comments:

Insufficient sample volume was available to perform a MS/MSD with the associated preparatory batch.

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

N/A; metals and/or inorganics were not analyzed as a part of this work order.

Laboratory Report Date:

11/15/2019

CS Site Name:

King Salmon DOT&PF PFAS

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

See above.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

See above.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

See above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and/or usability is not affected.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

The analytical method 537.1 uses IDA recovery, which entails adding a 13C-isotope of each target analyte, and assessing the recovery of each analyte. The isotopically-labeled compounds are discussed as surrogates for this method.

Laboratory Report Date:

11/15/2019

CS Site Name:

King Salmon DOT&PF PFAS

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; there were no IDA recovery failures associated with this work order.

iv. Data quality or usability affected?

Comments:

The data quality and usability are not affected; see above.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \square No \square N/A \boxtimes Comments:

PFAS are not volatile compounds; therefore, a trip blank is not required.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \square No \square N/A \boxtimes Comments:

N/A; a trip blank is not required.

iii. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \boxtimes Comments:

N/A; a trip blank is not required.

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

N/A; a trip blank is not required.

Laboratory Report Date:

11/15/2019

CS Site Name:

King Salmon DOT&PF PFAS

v. Data quality or usability affected?

Comments:

N/A; a trip blank is not required.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Submitted blind to lab?

Yes \square No \square N/A \square Comments:

The field duplicate pair AKNPW-003 / AKNPW-103 was submitted with this work order.

 iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)
 RPD (%) = Absolute value of: (R1-R2) x 100

 $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \ge 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \boxtimes No \square N/A \square Comments:

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

The data quality and/or usability is not affected; see above.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

Samples for this project are not collected with reusable equipment, therefore a practical potential for equipment based cross-contamination does not exist.

Laboratory Report Date:

11/15/2019

CS Site Name:

King Salmon DOT&PF PFAS

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \square Comments:

N/A; an equipment blank was not submitted with this work order.

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

None; see above.

iii. Data quality or usability affected?

Comments:

The data quality and usability were not affected; see above.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?
 - Yes \square No \square N/A \square Comments:

There were no additional flags/qualifiers required for this work order.

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-57929-1

Client Project/Site: King Salmon PFAS

For:

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Marcy Nadel

Authorized for release by: 1/30/2020 10:40:39 AM

David Alltucker, Project Manager I (916)374-4383 david.alltucker@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	16
Lab Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

3

Qualifiers

LCMS

Qualifier J

Qualifier Description Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GI	ossary	

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 320-57929-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-57929-1

Receipt

The samples were received on 1/21/2020 11:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 537.1 DW: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-352415.

Method 537.1 DW: Extracts are light amber in color. AKNPW-008 (320-57929-3) and AKNPW-011 (320-57929-4)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client Sample ID: AKNPW-003

5

Lab Sample ID: 320-57929-1

Lab Sample ID: 320-57929-2

Lab Sample ID: 320-57929-3

Lab Sample ID: 320-57929-4

Lab Sample ID: 320-57929-5

Lab Sample ID: 320-57929-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.077		0.0018	0.00045	ug/L	1	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.011		0.0018	0.00045	ug/L	1	537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.047		0.0018	0.00045	ug/L	1	537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.034		0.0018	0.00045	ug/L	1	537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.056		0.0018	0.00045	ug/L	1	537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.00098	J	0.0018	0.00045	ug/L	1	537.1 DW	Total/NA

Client Sample ID: AKNPW-007

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.0025		0.0017	0.00042	ug/L	1	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.0028		0.0017	0.00042	ug/L	1	537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.0023		0.0017	0.00042	ug/L	1	537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.00079	J	0.0017	0.00042	ug/L	1	537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.0022		0.0017	0.00042	ug/L	1	537.1 DW	Total/NA

Client Sample ID: AKNPW-008

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.0028		0.0017	0.00043	ug/L	1	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.00063	J	0.0017	0.00043	ug/L	1	537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.0025		0.0017	0.00043	ug/L	1	537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.00088	J	0.0017	0.00043	ug/L	1	537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.0015	J	0.0017	0.00043	ug/L	1	537.1 DW	Total/NA

Client Sample ID: AKNPW-011

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	F	Prep Type
Perfluorohexanoic acid (PFHxA)	0.0042		0.0017	0.00043	ug/L	1	_	537.1 DW	1	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.00088	J	0.0017	0.00043	ug/L	1		537.1 DW	٦	Total/NA
Perfluorooctanoic acid (PFOA)	0.0051		0.0017	0.00043	ug/L	1		537.1 DW	٦	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.00072	J	0.0017	0.00043	ug/L	1		537.1 DW	7	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.0023		0.0017	0.00043	ug/L	1		537.1 DW	٦	Total/NA

Client Sample ID: AKNPW-012

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.0088		0.0018	0.00045	ug/L	1	_	537.1 DW	 Total/NA
Perfluoroheptanoic acid (PFHpA)	0.0020		0.0018	0.00045	ug/L	1		537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.011		0.0018	0.00045	ug/L	1		537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.0016	J	0.0018	0.00045	ug/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.0061		0.0018	0.00045	ug/L	1		537.1 DW	Total/NA

Client Sample ID: AKNPW-103

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.072		0.0017	0.00043	ug/L	1	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.010		0.0017	0.00043	ug/L	1	537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.042		0.0017	0.00043	ug/L	1	537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.032		0.0017	0.00043	ug/L	1	537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.053		0.0017	0.00043	ug/L	1	537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.00094	J	0.0017	0.00043	ug/L	1	537.1 DW	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc Project/Site: King Salmon PFAS

13C3 HFPO-DA

Client Sample ID: AKNPW-003 Date Collected: 01/16/20 10:53 Date Received: 01/21/20 11:40

loh	ın	320	-57	'a2a	-1
J UD	ID.	520	-07	929	- 1

Lab Sample ID: 320-57929-1

Matrix: Water

Method: 537.1 DW - Perfluorin	ated Alkyl Acids (L Result Qualifier	.C/MS)	МОІ	Unit	П	Prepared	Analyzed	Dil Fac	5
Perfluorohexanoic acid (PFHxA)	0.077	0.0018	0.00045	ua/L		01/22/20 15:43	01/24/20 13:31	1	
Perfluoroheptanoic acid (PFHpA)	0.011	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	6
Perfluorooctanoic acid (PFOA)	0.047	0.0018	0.00045	uq/L		01/22/20 15:43	01/24/20 13:31	1	
Perfluorononanoic acid (PFNA)	ND	0.0018	0.00045	uq/L		01/22/20 15:43	01/24/20 13:31	1	
Perfluorodecanoic acid (PFDA)	ND	0.0018	0.00045	uq/L		01/22/20 15:43	01/24/20 13:31	1	
Perfluoroundecanoic acid (PFUnA)	ND	0.0018	0.00045	uq/L		01/22/20 15:43	01/24/20 13:31	1	0
Perfluorododecanoic acid (PFDoA)	ND	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	0
Perfluorotridecanoic acid (PFTriA)	ND	0.0018	0.00045	uq/L		01/22/20 15:43	01/24/20 13:31	1	
Perfluorotetradecanoic acid (PFTeA)	ND	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	9
Perfluorobutanesulfonic acid (PFBS)	0.034	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	
Perfluorohexanesulfonic acid (PFHxS)	0.056	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	
Perfluorooctanesulfonic acid	0.00098 J	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	
(PFOS)									
N-methylperfluorooctanesulfonamidoa	ND	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	
N-ethylperfluorooctanesulfonamidoac	ND	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	13
etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 13:31	1	
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C2 PFHxA	87	70 - 130				01/22/20 15:43	01/24/20 13:31	1	
13C2 PFDA	91	70 - 130				01/22/20 15:43	01/24/20 13:31	1	
d5-NEtFOSAA	84	70 - 130				01/22/20 15:43	01/24/20 13:31	1	

70 - 130

84

01/22/20 15:43 01/24/20 13:31

Client Sample ID: AKNPW-007 Date Collected: 01/16/20 12:38 Date Received: 01/21/20 11:40

Lab Sample ID: 320-57929-2 Matrix: Water

Method: 537.1 DW - Pertiuorin Analyte	Result	ACIOS (LC/ Qualifier	NIS) RI	MDI	Unit	р	Prepared	Analyzed	Dil Fac	5
Perfluorohexanoic acid (PFHxA)	0.0025		0.0017	0.00042	ua/L		01/22/20 15:43	01/24/20 13:39	1	
Perfluoroheptanoic acid (PFHpA)	0.0028		0.0017	0.00042	ua/L		01/22/20 15:43	01/24/20 13:39	1	6
Perfluorooctanoic acid (PFOA)	0.0023		0.0017	0.00042	ua/L		01/22/20 15:43	01/24/20 13:39	1	U
Perfluorononanoic acid (PFNA)	ND		0.0017	0.00042	ug/L		01/22/20 15:43	01/24/20 13:39	1	
Perfluorodecanoic acid (PFDA)	ND		0.0017	0.00042	ug/L		01/22/20 15:43	01/24/20 13:39	1	
Perfluoroundecanoic acid (PFUnA)	ND		0.0017	0.00042	ua/L		01/22/20 15:43	01/24/20 13:39	1	•
Perfluorododecanoic acid (PFDoA)	ND		0.0017	0.00042	ua/L		01/22/20 15:43	01/24/20 13:39	1	Ō
Perfluorotridecanoic acid (PFTriA)	ND		0.0017	0.00042	ua/L		01/22/20 15:43	01/24/20 13:39	1	
Perfluorotetradecanoic acid (PFTeA)	ND		0.0017	0.00042	ua/L		01/22/20 15:43	01/24/20 13:39	1	9
Perfluorobutanesulfonic acid (PFBS)	0.00079	J	0.0017	0.00042	ug/L		01/22/20 15:43	01/24/20 13:39	1	
Perfluorohexanesulfonic acid (PFHxS)	0.0022		0.0017	0.00042	ug/L		01/22/20 15:43	01/24/20 13:39	1	
Perfluorooctanesulfonic acid (PFOS)	ND		0.0017	0.00042	ug/L		01/22/20 15:43	01/24/20 13:39	1	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.0017	0.00042	ug/L		01/22/20 15:43	01/24/20 13:39	1	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.0017	0.00042	ug/L		01/22/20 15:43	01/24/20 13:39	1	13
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		0.0017	0.00042	ug/L		01/22/20 15:43	01/24/20 13:39	1	11
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		0.0017	0.00042	ug/L		01/22/20 15:43	01/24/20 13:39	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.0017	0.00042	ug/L		01/22/20 15:43	01/24/20 13:39	1	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.0017	0.00042	ug/L		01/22/20 15:43	01/24/20 13:39	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C2 PFHxA	87		70 - 130				01/22/20 15:43	01/24/20 13:39	1	
13C2 PFDA	85		70 - 130				01/22/20 15:43	01/24/20 13:39	1	
d5-NEtFOSAA	82		70 - 130				01/22/20 15:43	01/24/20 13:39	1	
13C3 HFPO-DA	74		70 - 130				01/22/20 15:43	01/24/20 13:39	1	
Client Sample ID: AKNPW-008 Date Collected: 01/16/20 13:45 Date Received: 01/21/20 11:40

Lab Sample ID: 320-57929-3 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Perfluorohexanoic acid (PFHxA)	0.0028		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
Perfluoroheptanoic acid (PFHpA)	0.00063	J	0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	6
Perfluorooctanoic acid (PFOA)	0.0025		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
Perfluorononanoic acid (PFNA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
Perfluorodecanoic acid (PFDA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
Perfluoroundecanoic acid (PFUnA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	Q
Perfluorododecanoic acid (PFDoA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	0
Perfluorotridecanoic acid (PFTriA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
Perfluorotetradecanoic acid (PFTeA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	9
Perfluorobutanesulfonic acid (PFBS)	0.00088	J	0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
Perfluorohexanesulfonic acid (PFHxS)	0.0015	J	0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
Perfluorooctanesulfonic acid (PFOS)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	13
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	1/
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/28/20 14:33	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C2 PFHxA	80		70 - 130				01/22/20 15:43	01/28/20 14:33	1	
13C2 PFDA	94		70 - 130				01/22/20 15:43	01/28/20 14:33	1	
d5-NEtFOSAA	84		70 - 130				01/22/20 15:43	01/28/20 14:33	1	
13C3 HFPO-DA	88		70 - 130				01/22/20 15:43	01/28/20 14:33	1	

Client Sample ID: AKNPW-011 Date Collected: 01/16/20 17:33 Date Received: 01/21/20 11:40

.loh	ıD·	320-	57929-1
000	ю.	020-	01020-1

Lab Sample ID: 320-57929-4

Matrix: Water

Method: 537.1 DW - Perfluorin	nated Alkyl	Acids (LC/	MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Perfluorohexanoic acid (PFHxA)	0.0042		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	
Perfluoroheptanoic acid (PFHpA)	0.00088	J	0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	6
Perfluorooctanoic acid (PFOA)	0.0051		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	
Perfluorononanoic acid (PFNA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	
Perfluorodecanoic acid (PFDA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	
Perfluoroundecanoic acid (PFUnA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	0
Perfluorododecanoic acid (PFDoA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	0
Perfluorotridecanoic acid (PFTriA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	0
Perfluorotetradecanoic acid (PFTeA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	9
Perfluorobutanesulfonic acid (PFBS)	0.00072	J	0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	
Perfluorohexanesulfonic acid (PFHxS)	0.0023		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	
Perfluorooctanesulfonic acid (PFOS)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	13
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	1/
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 13:55	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C2 PFHxA	85		70 - 130				01/22/20 15:43	01/24/20 13:55	1	
13C2 PFDA	90		70 - 130				01/22/20 15:43	01/24/20 13:55	1	
d5-NEtFOSAA	88		70 - 130				01/22/20 15:43	01/24/20 13:55	1	
13C3 HFPO-DA	78		70 - 130				01/22/20 15:43	01/24/20 13:55	1	

Client Sample Results

Client: Shannon & Wilson, Inc Project/Site: King Salmon PFAS

Client Sample ID: AKNPW-012 Date Collected: 01/16/20 18:45 Date Received: 01/21/20 11:40

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS)

Lab Sample ID: 320-57929-5 Matrix: Water

Dil Fac

	5
	6
	8
	9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.0088		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Perfluoroheptanoic acid (PFHpA)	0.0020		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Perfluorooctanoic acid (PFOA)	0.011		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Perfluorononanoic acid (PFNA)	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Perfluorodecanoic acid (PFDA)	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Perfluoroundecanoic acid (PFUnA)	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Perfluorododecanoic acid (PFDoA)	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Perfluorotridecanoic acid (PFTriA)	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Perfluorobutanesulfonic acid (PFBS)	0.0016	J	0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Perfluorohexanesulfonic acid (PFHxS)	0.0061		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.0018	0.00045	ug/L		01/22/20 15:43	01/24/20 14:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	83		70 - 130				01/22/20 15:43	01/24/20 14:03	1
13C2 PFDA	88		70 - 130				01/22/20 15:43	01/24/20 14:03	1
d5-NEtFOSAA	84		70 - 130				01/22/20 15:43	01/24/20 14:03	1
13C3 HFPO-DA	74		70 - 130				01/22/20 15:43	01/24/20 14:03	1

Client Sample ID: AKNPW-103 Date Collected: 01/16/20 11:23 Date Received: 01/21/20 11:40

Lab Sample ID: 320-57929-6 Matrix: Water

5

6

Method: 537.1 DW - Perfluorin	ated Alkyl	Acids (LC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.072		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
Perfluoroheptanoic acid (PFHpA)	0.010		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
Perfluorooctanoic acid (PFOA)	0.042		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
Perfluorononanoic acid (PFNA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
Perfluorodecanoic acid (PFDA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
Perfluoroundecanoic acid (PFUnA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
Perfluorododecanoic acid (PFDoA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
Perfluorotridecanoic acid (PFTriA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
Perfluorobutanesulfonic acid	0.032		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
(PFBS)									
Perfluorohexanesulfonic acid	0.053		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
(PFHxS)			0.0047						
Perfluorooctanesulfonic acid	0.00094	J	0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
(PFOS)	ND		0.0017	0 00043	ua/l		01/22/20 15:43	01/24/20 14.11	
cetic acid (NMeEOSAA)	ND		0.0017	0.00040	ug/L		01/22/20 13.43	01/24/2014.11	
N-ethylperfluorooctanesulfonamidoac	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
etic acid (NEtFOSAA)					0				
9-Chlorohexadecafluoro-3-oxanonan	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
e-1-sulfonic acid (9CI-PF3O									
11-Chloroeicosafluoro-3-oxaundecan	ND		0.0017	0.00043	ug/L		01/22/20 15:43	01/24/20 14:11	1
e-1-sulfonic acid (11CI-PF			0.0017	0 00042			01/22/20 15:42	01/24/20 14.11	1
	ND		0.0017	0.00043	ug/L		01/22/20 15.45	01/24/20 14.11	I
4 8-Dioxa-3H-perfluorononanoic acid	ND		0.0017	0.00043	ua/L		01/22/20 15:43	01/24/20 14:11	1
(ADONA)					3				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	80		70 - 130				01/22/20 15:43	01/24/20 14:11	1
13C2 PFDA	83		70 - 130				01/22/20 15:43	01/24/20 14:11	1
d5-NEtFOSAA	87		70 - 130				01/22/20 15:43	01/24/20 14:11	1
13C3 HFPO-DA	71		70 - 130				01/22/20 15:43	01/24/20 14:11	1

Surrogate Summary

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) Matrix: Water

		-			Prep Type: Total/NA	
		P	ercent Surro	ogate Recov	very (Acceptance Limits)	
	PFHxA	PFDA	-NEtFOS/	HFPODA	,	
Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)		Ę
AKNPW-003	87	91	84	84		
AKNPW-007	87	85	82	74		
AKNPW-008	80	94	84	88		
AKNPW-011	85	90	88	78		5
AKNPW-012	83	88	84	74		- 4
AKNPW-103	80	83	87	71		G
Lab Control Sample	90	83	93	75		
Lab Control Sample Dup	83	87	89	77		6
Method Blank	92	89	93	78		

Surrogate Legend

Lab Sample ID

320-57929-1

320-57929-2

320-57929-3

320-57929-4

320-57929-5

320-57929-6

LCS 320-352415/2-A

MB 320-352415/1-A

LCSD 320-352415/3-A

PFHxA = 13C2 PFHxA PFDA = 13C2 PFDA d5-NEtFOSAA = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA Job ID: 320-57929-1

Prep Type: Total/NA

5

8

Client Sample ID: Method Blank

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS)

Lab Sample ID: MB 320-352415/1-A **Matrix: Water** Analysis Batch: 352814

Analysis Batch: 352814								Prep Batch:	352415
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Perfluoroheptanoic acid (PFHpA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Perfluorooctanoic acid (PFOA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Perfluorononanoic acid (PFNA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Perfluorodecanoic acid (PFDA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Perfluoroundecanoic acid (PFUnA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Perfluorododecanoic acid (PFDoA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Perfluorotridecanoic acid (PFTriA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.0020	0.00050	ug/L		01/22/20 15:43	01/24/20 13:07	1
	MB	MB							

%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
92		70 - 130	01/22/20 15:43	01/24/20 13:07	1
89		70 - 130	01/22/20 15:43	01/24/20 13:07	1
93		70 - 130	01/22/20 15:43	01/24/20 13:07	1
78		70 - 130	01/22/20 15:43	01/24/20 13:07	1
	%Recovery 92 89 93 78	%Recovery Qualifier 92 89 93 78	%Recovery Qualifier Limits 92 70 - 130 89 70 - 130 93 70 - 130 78 70 - 130	%Recovery Qualifier Limits Prepared 92 70 - 130 01/22/20 15:43 01/22/20 15:43 89 70 - 130 01/22/20 15:43 01/22/20 15:43 93 70 - 130 01/22/20 15:43 01/22/20 15:43 78 70 - 130 01/22/20 15:43 01/22/20 15:43	%Recovery Qualifier Limits Prepared Analyzed 92 70 - 130 01/22/20 15:43 01/24/20 13:07 89 70 - 130 01/22/20 15:43 01/24/20 13:07 93 70 - 130 01/22/20 15:43 01/24/20 13:07 78 70 - 130 01/22/20 15:43 01/24/20 13:07

Lab Sample ID: LCS 320-352415/2-A **Matrix: Water** Analysis Batch: 352767

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 352415

	Spike	LCS LCS			%Rec.
Analyte	Added	Result Quali	fier Unit	D %Rec	Limits
Perfluorohexanoic acid (PFHxA)	0.00400	0.00354	ug/L	89	70 - 130
Perfluoroheptanoic acid (PFHpA)	0.00400	0.00368	ug/L	92	70 - 130
Perfluorooctanoic acid (PFOA)	0.00400	0.00360	ug/L	90	70 - 130
Perfluorononanoic acid (PFNA)	0.00400	0.00366	ug/L	92	70 - 130
Perfluorodecanoic acid (PFDA)	0.00400	0.00348	ug/L	87	70 - 130
Perfluoroundecanoic acid (PFUnA)	0.00400	0.00339	ug/L	85	70 - 130
Perfluorododecanoic acid (PFDoA)	0.00400	0.00335	ug/L	84	70 - 130
Perfluorotridecanoic acid (PFTriA)	0.00400	0.00403	ug/L	101	70 - 130
Perfluorotetradecanoic acid (PFTeA)	0.00400	0.00319	ug/L	80	70 - 130
Perfluorobutanesulfonic acid (PFBS)	0.00354	0.00307	ug/L	87	70 - 130

Eurofins TestAmerica, Sacramento

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LCS 320-3 Matrix: Water					Clie	ent Sai	mple ID	: Lab Control Sample Prep Type: Total/NA	
Analysis Batch: 352767			0	1.00					Prep Batch: 352415
			Spike	LCS	LUS		_		%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanesulfonic acid (PFHxS)			0.00364	0.00328		ug/L		90	70 - 130
Perfluorooctanesulfonic acid (PFOS)			0.00371	0.00306		ug/L		83	70 - 130
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			0.00400	0.00353		ug/L		88	70 - 130
N-ethylperfluorooctanesulfonami			0.00400	0.00366		ug/L		92	70 - 130
9-Chlorohexadecafluoro-3-oxan			0.00373	0.00320		ug/L		86	70 - 130
11-Chloroeicosafluoro-3-oxaund			0.00377	0.00371		ug/L		98	70 - 130
Hexafluoropropylene Oxide			0.00400	0.00352		ug/L		88	70 - 130
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)			0.00377	0.00347		ug/L		92	70 - 130
	105	105							
Surrogate	%Recovery	Qualifier	l imits						
13C2 PEHYA			70 130						
13C2 PEDA	30		70 120						
	83		70 - 130						
as-inethOSAA	93		70 - 130						
13C3 HFPO-DA	75		70 - 130						

Lab Sample ID: LCSD 320-352415/3-A Matrix: Water Analysis Batch: 352767

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 352767	Sniko		CSD				Prep Ba	tch: 3	52415 RPD
Analyte	Added	Result Q	ualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	0.00400	0.00343		ug/L		86	70 - 130	3	
Perfluoroheptanoic acid (PFHpA)	0.00400	0.00354		ug/L		88	70 - 130	4	30
Perfluorooctanoic acid (PFOA)	0.00400	0.00361		ug/L		90	70 - 130	0	30
Perfluorononanoic acid (PFNA)	0.00400	0.00357		ug/L		89	70 - 130	2	30
Perfluorodecanoic acid (PFDA)	0.00400	0.00343		ug/L		86	70 - 130	2	30
Perfluoroundecanoic acid (PFUnA)	0.00400	0.00335		ug/L		84	70 - 130	1	30
Perfluorododecanoic acid (PFDoA)	0.00400	0.00353		ug/L		88	70 - 130	5	30
Perfluorotridecanoic acid (PFTriA)	0.00400	0.00359		ug/L		90	70 - 130	12	30
Perfluorotetradecanoic acid (PFTeA)	0.00400	0.00340		ug/L		85	70 - 130	6	30
Perfluorobutanesulfonic acid (PFBS)	0.00354	0.00307		ug/L		87	70 - 130	0	30
Perfluorohexanesulfonic acid (PFHxS)	0.00364	0.00330		ug/L		91	70 - 130	1	30
Perfluorooctanesulfonic acid (PFOS)	0.00371	0.00324		ug/L		87	70 - 130	5	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	0.00400	0.00364		ug/L		91	70 - 130	3	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	0.00400	0.00382		ug/L		95	70 - 130	4	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid (9CI-PF3O	0.00373	0.00329		ug/L		88	70 - 130	3	30

Eurofins TestAmerica, Sacramento

5

8 9

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LCSD 320 Matrix: Water Analysis Batch: 352767	ab Sample ID: LCSD 320-352415/3-A latrix: Water nalysis Batch: 352767				C	Client S	ample	ID: Lat	Control Prep Ty Prep Ba	Sample pe: Tot atch: 3{	e Dup al/NA 52415
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid (11Cl-PF			0.00377	0.00368		ug/L		98	70 - 130	1	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)			0.00400	0.00340		ug/L		85	70 - 130	3	30
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)			0.00377	0.00341		ug/L		90	70 - 130	2	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
13C2 PFHxA	83		70 - 130								
13C2 PFDA	87		70 - 130								
d5-NEtFOSAA	89		70 - 130								
13C3 HFPO-DA	77		70 - 130								

LCMS

Prep Batch: 352415

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-57929-1	AKNPW-003	Total/NA	Water	537.1 DW	
320-57929-2	AKNPW-007	Total/NA	Water	537.1 DW	
320-57929-3	AKNPW-008	Total/NA	Water	537.1 DW	
320-57929-4	AKNPW-011	Total/NA	Water	537.1 DW	
320-57929-5	AKNPW-012	Total/NA	Water	537.1 DW	
320-57929-6	AKNPW-103	Total/NA	Water	537.1 DW	
MB 320-352415/1-A	Method Blank	Total/NA	Water	537.1 DW	
LCS 320-352415/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	
LCSD 320-352415/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	
Analysis Batch: 3527	67				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 320-352415/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	352415
LCSD 320-352415/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	352415
Analysis Batch: 3528	14				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-57929-1	AKNPW-003	Total/NA	Water	537.1 DW	352415

320-57929-1	AKNPW-003	Total/NA	Water	537.1 DW	352415	
320-57929-2	AKNPW-007	Total/NA	Water	537.1 DW	352415	
320-57929-4	AKNPW-011	Total/NA	Water	537.1 DW	352415	
320-57929-5	AKNPW-012	Total/NA	Water	537.1 DW	352415	
320-57929-6	AKNPW-103	Total/NA	Water	537.1 DW	352415	
MB 320-352415/1-A	Method Blank	Total/NA	Water	537.1 DW	352415	
—						

Analysis Batch: 353559

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
320-57929-3	AKNPW-008	Total/NA	Water	537.1 DW	352415

Client Sample ID: AKNPW-003 Date Collected: 01/16/20 10:53 Date Received: 01/21/20 11:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			279.7 mL	1.00 mL	352415	01/22/20 15:43	JER	TAL SAC
Total/NA	Analysis	537.1 DW		1			352814	01/24/20 13:31	JRB	TAL SAC

Client Sample ID: AKNPW-007 Date Collected: 01/16/20 12:38 Date Received: 01/21/20 11:40

Bron Tuno	Batch	Batch Mothod	Bun	Dil	Initial	Final	Batch	Prepared	Analyst	Lab
			Kun	Factor	Amount	Amount		Or Analyzed	Analyst	
I otal/NA	Prep	537.1 DW			298.2 mL	1.00 mL	352415	01/22/20 15:43	JER	TAL SAC
Total/NA	Analysis	537.1 DW		1			352814	01/24/20 13:39	JRB	TAL SAC

Client Sample ID: AKNPW-008 Date Collected: 01/16/20 13:45

Date Received: 01/21/20 11:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			292.2 mL	1.00 mL	352415	01/22/20 15:43	JER	TAL SAC
Total/NA	Analysis	537.1 DW		1			353559	01/28/20 14:33	P1N	TAL SAC

Client Sample ID: AKNPW-011

Date Collected: 01/16/20 17:33

Date Received: 01/21/20 11:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			293.3 mL	1.00 mL	352415	01/22/20 15:43	JER	TAL SAC
Total/NA	Analysis	537.1 DW		1			352814	01/24/20 13:55	JRB	TAL SAC

Client Sample ID: AKNPW-012 Date Collected: 01/16/20 18:45 Date Received: 01/21/20 11:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			279.9 mL	1.00 mL	352415	01/22/20 15:43	JER	TAL SAC
Total/NA	Analysis	537.1 DW		1			352814	01/24/20 14:03	JRB	TAL SAC

Client Sample ID: AKNPW-103 Date Collected: 01/16/20 11:23 Date Received: 01/21/20 11:40

_	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Гуре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			287.6 mL	1.00 mL	352415	01/22/20 15:43	JER	TAL SAC
Total/NA	Analysis	537.1 DW		1			352814	01/24/20 14:11	JRB	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 320-57929-1 Matrix: Water

Lab Sample ID: 320-57929-2

Lab Sample ID: 320-57929-3

Lab Sample ID: 320-57929-4

Lab Sample ID: 320-57929-5

Lab Sample ID: 320-57929-6

Client: Shannon & Wilson, Inc Project/Site: King Salmon PFAS

Job ID: 320-57929-1

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

– Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-20
Arkansas DEQ	State	19-042-0	06-17-20
California	State	2897	01-31-20 *
Colorado	State	CA0004	08-31-20
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-20
Hawaii	State	<cert no.=""></cert>	01-29-20 *
Illinois	NELAP	200060	03-17-20
Kansas	NELAP	E-10375	10-31-20 *
Louisiana	NELAP	01944	06-30-20
Maine	State	2018009	04-14-20
Michigan	State	9947	01-29-20 *
Michigan	State Program	9947	01-31-20
Nevada	State	CA000442020-1	07-31-20
New Hampshire	NELAP	2997	04-18-20
New Jersey	NELAP	CA005	06-30-20
New York	NELAP	11666	04-01-20
Oregon	NELAP	4040	01-29-20
Pennsylvania	NELAP	68-01272	03-31-20
Texas	NELAP	T104704399-19-13	05-31-20
US Fish & Wildlife	US Federal Programs	58448	07-31-20
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-29-20
Vermont	State	VT-4040	04-16-20
Virginia	NELAP	460278	03-14-20
Washington	State	C581	05-05-20
West Virginia (DW)	State	9930C	12-31-19 *
West Virginia (DW)	State	9930C	12-31-20
Wyoming	State Program	8TMS-L	01-28-19 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Shannon & Wilson, Inc Project/Site: King Salmon PFAS

Method	Method Description	Protocol	Laboratory
537.1 DW	Perfluorinated Alkyl Acids (LC/MS)	EPA	TAL SAC
537.1 DW	Extraction of Perfluorinated Alkyl Acids	EPA	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: King Salmon PFAS

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Ass
320-57929-1	AKNPW-003	Water	01/16/20 10:53	01/21/20 11:40	_
320-57929-2	AKNPW-007	Water	01/16/20 12:38	01/21/20 11:40	
320-57929-3	AKNPW-008	Water	01/16/20 13:45	01/21/20 11:40	
320-57929-4	AKNPW-011	Water	01/16/20 17:33	01/21/20 11:40	
320-57929-5	AKNPW-012	Water	01/16/20 18:45	01/21/20 11:40	
320-57929-6	AKNPW-103	Water	01/16/20 11:23	01/21/20 11:40	

Geotechnical and Environm	LSON, INC. nental Consultants	CH	IAIN-	OF-C	UST	ODY RE	ECORD	Labora Attn:	Page atory Test Ame David All+	Je of I crical Eurofins UCKEC
Seattle, WA 98103 St. Louis, (314) 699. (206) 632-8020 (314) 699. 2355 Hill Road 5430 Fairl Fairbanks, AK 99709 (907) 479-0600 3990 Collins Way, Suite 100 1321 Banr Lake Oswego, OR 97035 (503) 223-6147	MO 63146-3564 Pa -9660 (50 banks Street, Suite 3 e, AK 99518 -2120 nock Street, Suite 200 O 80204 -3800	usco, WA 99 09) 946-630	Date	581 / 2		Analy HS1571	rsis Parameters/Sample (include preserva	e Container De ative if used)	escription	7
Sample Identity	Lab No. T	ime	Sampled	00 60	/ · · · ·	1-1-	-	\leftarrow	Remar	ks/Matrix
AKNPW-003	10	:53	116/202	0	~				2 VIINGIN	g water
AKNPW-001	12	:38	_		V			-	4	<i>,</i>
AKNPW-008	13	:45	_		V				2	
AKNPW-OII	17	:33		V	V			1	2	
AKNPW-012	18:	45		V					2	
AKNPW-103	11:	23	V	V	5	, I.	1 1		2 1	-
						320-57929	Chain of Custody			
Project Information	Sample F	Receipt		Relinq	uished	By: 1.	Relinquished	By: 2.	Relinquishe	ed By: 3.
Project Number: 102582-00	3 Total Number of Co	ntainers		Signature:	Var	ime: <u>6:35</u>	Signature:	ime: 1200	Signature:	Time:
Project Name: King Salmon Pra	S COC Seals/Intact?	Y/N/NA		Printed Name:	, C	ate: 1/17/202	Printed Name:	Date: 1/20/200	Printed Name:	Date:
Contact: NFFF	Delivery Method:	nd./Cold		Alena	Voigt		Alena Voigt	c .		
Sampler: ADV	(attach shipping bill, if	any)		Shan	nonti	wilson	Company:		Company:	
Inst	ructions			Receiv	ed By:	1.	Received By:	2.	Received B	v: 3.
Requested Turnaround Time: S	TANDARD			Signature:	V -1	ime: 12:30	Signature / k	ime: 11.40	Signature:	Time:
Special Instructions: 18 PFAS by E	IA 537.1			Printed Name:	Voig	ate: 1/17/2010	Printed Name: D David Hu	Date: 1/21/20	Printed Name:	Date:
Distribution: White - w/shipment - return Yellow - w/shipment - for o Pink - Shannon & Wilson -	ned to Shannon & Wilson v consignee files Job File	w/ laborato	ry report	Company: 3hannu	ntw	lison	Company:	-	Company:	
91/UR							2.40		No.	35007

 10

 11

 12

 13

1/30/2020

Client: Shannon & Wilson, Inc

Login Number: 57929 List Number: 1 Creator: Oropeza, Salvador

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1085451, 1085450
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-57929-1

List Source: Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:

Rachel Willis

Title:

Environmental Scientist

Date:

January 30, 2020

Consultant Firm:

Shannon and Wilson, Inc.

Laboratory Name:

TestAmerica Laboratories, Inc.

Laboratory Report Number:

320-57929-1

Laboratory Report Date:

January 30, 2020

CS Site Name:

ADOT&PF King Salmon Airport Statewide PFAS

ADEC File Number:

2569.38.033

Hazard Identification Number:

26981

Laboratory Report Date:

January 30, 2020

CS Site Name:

ADOT&PF King Salmon Airport Statewide PFAS

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

2.

3.

a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?

	Yes⊠	No□	N/A	Comments:
Tl pe cc	he ADEC centric de la construction de la construcción de la construcci	rtified tl Iesulfon ere inclu	he TestAme ic acid (PF uded in the	erica Laboratories West Sacramento, CA location for the analysis of OS) and perfluorooctanoic acid (PFOA) on February 6, 2018. These ADEC's Contaminated Sites Laboratory Approval 17-020.
b.	If the samp laboratory,	les wer was the	e transferre e laboratory	ed to another "network" laboratory or sub-contracted to an alternate y performing the analyses ADEC CS approved?
	Yes□	No□	N/A 🖂	Comments:
Chai	n of Custody	<u>/ (CoC)</u>		
a.	CoC inform	nation c	completed,	signed, and dated (including released/received by)?
	Yes⊠	No□	N/A	Comments:
b.	Correct and	alyses re	equested?	
	Yes⊠	No□	N/A	Comments:
Labo	oratory Samp	le Rece	ipt Docum	entation
a.	Sample/co	oler tem	perature do	ocumented and within range at receipt (0° to 6° C)?
	Yes⊠	No□	N/A	Comments:
-				

- b. Sample preservation acceptable acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
 - Yes \boxtimes No \square N/A \square Comments:

Samples were preserved with Trizma.

Laboratory Report Date:

January 30, 2020

CS Site Name:

ADOT&PF King Salmon Airport Statewide PFAS

c. Sample condition documented - broken, leaking (Methanol), zero headspace (VOC vials)?

Yes \boxtimes No \square N/A \square Comments:

The sample receipt form notes that the samples were received in good condition.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \square No \boxtimes N/A \square Comments:

There were no discrepancies noted in the sample receipt documentation.

e. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

4. <u>Case Narrative</u>

a. Present and understandable?

Yes \boxtimes No \square N/A \square Comments:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

The samples arrived in good condition and properly preserved. The temperature of the sample cooler received with this shipment was 2.3 ° C upon arrival at the laboratory.

There was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with preparation batch 320-352415.

The extracts for project samples AKNPW-008 and AKNPW-011 were light amber in color.

c. Were all corrective actions documented?

Yes \square No \square N/A \boxtimes Comments:

No corrective actions were documented in the case narrative.

Laboratory Report Date:

January 30, 2020

CS Site Name:

ADOT&PF King Salmon Airport Statewide PFAS

d. What is the effect on data quality/usability according to the case narrative?

Comments:

The case narrative does not note an effect on data quality.

5. <u>Samples Results</u>

a. Correct analyses performed/reported as requested on COC?

Yes \boxtimes No \square N/A \square Comments:

b. All applicable holding times met?

Yes \boxtimes No \square N/A \square Comments:

c. All soils reported on a dry weight basis?

Yes \square No \square N/A \boxtimes Comments:

Soil samples were not submitted with this work order.

d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Yes \boxtimes No \square N/A \square Comments:

The LOQ, equivalent to the TestAmerica Reporting Limit (RL), is less than the applicable ADEC regulatory limits for drinking water .

e. Data quality or usability affected?

The data quality and/or usability are not affected.

6. QC Samples

- a. Method Blank
 - i. One method blank reported per matrix, analysis and 20 samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

January 30, 2020

CS Site Name:

ADOT&PF King Salmon Airport Statewide PFAS

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \boxtimes N/A \square Comments:

PFAS compounds were not detected in the method blank sample.

iii. If above LOQ or project specified objectives, what samples are affected? Comments:

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

YesNo $N/A \boxtimes$ Comments:

PFAS compounds were not detected in the method blank sample. Therefore, qualification of the results was not required

v. Data quality or usability affected?

Comments:

The data quality and/or usability are not affected.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes \boxtimes No \square N/A \square Comments:

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

N/A; metals and/or inorganics were not analyzed as part of this work order.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

January 30, 2020

CS Site Name:

ADOT&PF King Salmon Airport Statewide PFAS

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

None; analytical accuracy and precision were demonstrated to be within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

Qualification of the data was not required; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability are not affected.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Note: Leave blank if not required for project

i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?

<u>Yes</u> No \boxtimes N/A \square Comments:

Insufficient sample volume was available to perform a MS/MSD with the associated preparatory batch. However, the laboratory analyzed an LCS and LCSD to assess laboratory accuracy and precision.

ii. Metals/Inorganics - one MS and one MSD reported per matrix, analysis and 20 samples?

Yes \square No \square N/A \boxtimes Comments:

N/A; metals and/or inorganics were not analyzed as a part of this work order.

Laboratory Report Date:

January 30, 2020

CS Site Name:

ADOT&PF King Salmon Airport Statewide PFAS

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

See above.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes \square No \square N/A \boxtimes Comments:

See above.

- v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

See above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

See above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality and/or usability is not affected. We are unable to assess matrix interference in laboratory methods.

- d. Surrogates Organics Only or Isotope Dilution Analytes (IDA) Isotope Dilution Methods Only
 - i. Are surrogate/IDA recoveries reported for organic analyses field, QC and laboratory samples?

Yes \boxtimes No \square N/A \square Comments:

Laboratory Report Date:

January 30, 2020

CS Site Name:

ADOT&PF King Salmon Airport Statewide PFAS

ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

Yes \boxtimes No \square N/A \square Comments:

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

N/A; there were no IDA recovery failures associated with this work order.

iv. Data quality or usability affected?

Comments:

The data quality and usability are not affected; see above.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \square No \square N/A \boxtimes Comments:

PFAS are not volatile compounds; therefore, a trip blank is not required.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

YesNo $N/A \boxtimes$ Comments:

A trip blank is not required.

iii. All results less than LOQ and project specified objectives?

YesNoN/AComments:

A trip blank is not required.

iv. If above LOQ or project specified objectives, what samples are affected?

Comments:

A trip blank is not required.

Laboratory Report Date:

January 30, 2020

CS Site Name:

ADOT&PF King Salmon Airport Statewide PFAS

v. Data quality or usability affected?

Comments:

A trip blank is not required.

- f. Field Duplicate
 - i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes \boxtimes No \square N/A \square Comments:

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \square Comments:

The field duplicate pair AKNPW-003 / AKNPW-103 was submitted with this work order.

 iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)
 RPD (%) = Absolute value of: (R₁-R₂) x 100

 $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$

Where $R_1 =$ Sample Concentration $R_2 =$ Field Duplicate Concentration

Yes \boxtimes No \square N/A \square Comments:

iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:

The data quality and/or usability is not affected; see above.

g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?

Yes \square No \square N/A \boxtimes Comments:

Samples for this project are not collected with reusable equipment; a practical potential for equipment based cross-contamination does not exist.

Laboratory Report Date:

January 30, 2020

CS Site Name:

ADOT&PF King Salmon Airport Statewide PFAS

i. All results less than LOQ and project specified objectives?

Yes \square No \square N/A \square Comments:

N/A; an equipment blank was not submitted with this work order.

ii. If above LOQ or project specified objectives, what samples are affected? Comments:

None; see above.

iii. Data quality or usability affected?

Comments:

The data quality and usability were not affected; see above.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?
 - Yes \square No \square N/A \square Comments:

There were no additional flags/qualifiers required for this work order.

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks 2355 Hill Rd. Fairbanks, AK 99701 (907)479-0600

Report Number: **1192542**

Client Project: Eddie's Fireplace Inn

Dear Kristen Freiburger,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 06/07/2019 11:20:29AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks

SGS Project: 1192542

Project Name/Site: Eddie's Fireplace Inn

Refer to sample receipt form for information on sample condition.

WTI/5192] 1509502 MB

2510B - Conductivity - Conductivity of the MB was detected above the LOQ. Associated samples are greater than 10X the MB conductivity.

* QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to the associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 06/07/2019 11:20:32AM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary										
<u>Client Sample ID</u> Eddie's Fireplace Inn	<u>Lab Sample ID</u> 1192542001	<u>Collected</u> 05/22/2019	<u>Received</u> 05/23/2019	<u>Matrix</u> Drinking Water						
Method SM21 2320B SM21 2510B SM21 2340B EPA 300.0 EP200.8 SM21 4500NO3-F SM21 4500-H B SM21 9223B SM21 2540C	Method Dese Alkalinity as Conductivity Hardness as Ion Chromat Metals in Wa Nitrate/Nitrite pH Analysis Total Colifore Total Dissolv	cription CaCO3 w/ PIWA SM2510B w/ PIV CaCO3 by ICP-I ographic Analysis ater by ICP-MS P e Flow injection P w/ PIWA m P/A Qualitative yed Solids SM182	VA MS s w/ PIWA IWA res. 2540C w/PIWA							

Detectable Results Summary

Client Sample ID: Eddie's Fireplace Inn Lab Sample ID: 1192542001 Metals by ICP/MS Microbiology Laboratory

Private Individual Analysis

<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Hardness as CaCO3	37400	ug/L
E. Coli	Negative	100mL
Total Coliform	Negative	100mL
Alkalinity	136000	ug/L
Barium	3.63	ug/L
Calcium	6050	ug/L
Chloride	21900	ug/L
Conductivity	345	umhos/cm
Copper	1.22	ug/L
HCO3 Alkalinity	133000	ug/L
Magnesium	5400	ug/L
Manganese	185	ug/L
рН	8.3	pH units
Potassium	5010	ug/L
Sodium	59800	ug/L
Sulfate	6130	ug/L

Print Date: 06/07/2019 11:20:35AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

SGS

Results of Eddie's Fireplace Inn							
Client Sample ID: Eddie's Fireplace Client Project ID: Eddie's Fireplace I Lab Sample ID: 1192542001 Lab Project ID: 1192542	C R M S L	ollection D eceived D atrix: Drinl olids (%): ocation:	0ate: 05/22/ ate: 05/23/1 king Water	19 13:3 9 08:2	0 2		
Results by							
Parameter Total Dissolved Solids	<u>Result Qual</u> 234000 *	<u>LOQ/CL</u> 10000	<u>DL</u> 3100	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u> (<500)	Date Analyzed 05/24/19 15:53
Batch Information Analytical Batch: STS6283 Analytical Method: SM21 2540C Analyst: EWW Analytical Date/Time: 05/24/19 15:53 Container ID: 1192542001-D							

SGS

Results of Eddie's Fireplace Inn Client Sample ID: Eddie's Fireplace Inn Client Project ID: Eddie's Fireplace Inn Lab Sample ID: 1192542001 Lab Project ID: 1192542						
			Collection Date: 05/22/19 13:30 Received Date: 05/23/19 08:22 Matrix: Drinking Water Solids (%): Location:			
<u>Result Qual</u> 37400	<u>LOQ/CL</u> 5000	<u>DL</u> 5000	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> Limits	Date Analyzed 05/31/19 16:27
7	i i i i i i i i i i i i i i i i i i i	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	MXX32441 I: E200.2 Ime: 05/29/1 Vt./Vol.: 20 r Vol: 50 mL	9 11:30 nL		
	e Inn e Inn Result Qual 37400	e Inn C. R M Sc La Result Qual 37400 LOQ/CL 5000	e Inn E Inn Collection Da Received Da Matrix: Drink Solids (%): Location: Collection Da Matrix: Drink Solids (%): Location: Prep Batch: Prep Method Prep Date/Ti Prep Initial V Prep Extract	e Inn E Inn Collection Date: 05/22/ Received Date: 05/23/2 Matrix: Drinking Water Solids (%): Location: <u>Result Qual</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u> 37400 <u>5000</u> <u>5000</u> ug/L Prep Batch: MXX32441 Prep Method: E200.2 Prep Date/Time: 05/29/1 Prep Initial Wt./Vol.: 20 r Prep Extract Vol: 50 mL	e Inn E Inn Collection Date: 05/22/19 13:30 Received Date: 05/23/19 08:22 Matrix: Drinking Water Solids (%): Location: <u>Result Qual</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DF</u> 37400 5000 5000 ug/L 1 Prep Batch: MXX32441 Prep Method: E200.2 Prep Date/Time: 05/29/19 11:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL	e Inn E Inn E Inn Collection Date: 05/22/19 13:30 Received Date: 05/23/19 08:22 Matrix: Drinking Water Solids (%): Location: <u>Result Qual</u> <u>LOQ/CL</u> <u>DL</u> <u>Units</u> <u>DF</u> <u>Allowable</u> Limits <u>Allowable</u> Limits Prep Batch: MXX32441 Prep Method: E200.2 Prep Date/Time: 05/29/19 11:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Results of Eddie's Fireplace Inn							
Client Sample ID: Eddie's Fireplace Client Project ID: Eddie's Fireplace Lab Sample ID: 1192542001 Lab Project ID: 1192542	Inn Inn	C R M Si La	ollection Date: 05/22/19 13:30 eceived Date: 05/23/19 08:22 latrix: Drinking Water olids (%): ocation:			I	
Results by Microbiology Laboratory		_					
<u>Parameter</u> E. Coli Total Coliform	<u>Result Qual</u> Negative Negative	<u>LOQ/CL</u> 1 1	<u>DL</u> 1 1	<u>Units</u> 100mL 100mL	<u>DF</u> 1 1	<u>Allowable</u> Limits	Date Analyzed 05/23/19 18:03 05/23/19 18:03
Batch Information Analytical Batch: BTF17362 Analytical Method: SM21 9223B Analyst: ACF Analytical Date/Time: 05/23/19 18:03 Container ID: 1192542001-A							

Results of Eddie's Fireplace Inn

Client Sample ID: Eddie's Fireplace Inn Client Project ID: Eddie's Fireplace Inn Lab Sample ID: 1192542001 Lab Project ID: 1192542 Collection Date: 05/22/19 13:30 Received Date: 05/23/19 08:22 Matrix: Drinking Water Solids (%): Location:

Results by Private Individual Analysis

						Allowable	
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Aluminum	20.0 U	20.0	6.20	ug/L	1		05/31/19 16:27
Antimony	1.00 U	1.00	0.310	ug/L	1	(<6)	05/31/19 16:27
Arsenic	5.00 U	5.00	1.50	ug/L	1	(<10)	05/31/19 16:27
Barium	3.63	3.00	0.940	ug/L	1	(<2000)	05/31/19 16:27
Cadmium	0.500 U	0.500	0.150	ug/L	1	(<5)	05/31/19 16:27
Calcium	6050	500	150	ug/L	1		05/31/19 16:27
Chromium	2.00 U	2.00	0.800	ug/L	1	(<100)	05/31/19 16:27
Copper	1.22	1.00	0.310	ug/L	1	(<1000)	05/31/19 16:27
Iron	250 U	250	78.0	ug/L	1	(<300)	05/31/19 16:27
Lead	0.200 U	0.200	0.0700	ug/L	1	(<15)	05/31/19 16:27
Magnesium	5400	50.0	15.0	ug/L	1		05/31/19 16:27
Manganese	185 *	1.00	0.350	ug/L	1	(<50)	05/31/19 16:27
Nickel	2.00 U	2.00	0.620	ug/L	1	(<100)	05/31/19 16:27
Potassium	5010	500	150	ug/L	1		05/31/19 16:27
Selenium	5.00 U	5.00	1.50	ug/L	1	(<50)	05/31/19 16:27
Silver	1.00 U	1.00	0.310	ug/L	1	(<100)	05/31/19 16:27
Sodium	59800	500	150	ug/L	1		05/31/19 16:27
Thallium	1.00 U	1.00	0.310	ug/L	1	(<2)	05/31/19 16:27
Zinc	10.0 U	10.0	3.10	ug/L	1	(<5000)	05/31/19 16:27

Batch Information

Analytical Batch: MMS10525 Analytical Method: EP200.8 Analyst: DSH Analytical Date/Time: 05/31/19 16:27 Container ID: 1192542001-B Prep Batch: MXX32441 Prep Method: E200.2 Prep Date/Time: 05/29/19 11:30 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						Allowable	
Parameter	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	DF	Limits	Date Analyzed
Chloride	21900 *	1000	250	ug/L	5	(<250)	06/04/19 18:33
Fluoride	200 U	200	50.0	ug/L	1	(<2)	06/04/19 17:36
Sulfate	6130 *	200	50.0	ug/L	1	(<250)	06/04/19 17:36

Print Date: 06/07/2019 11:20:36AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of Eddie's Fireplace Inn							
Client Sample ID: Eddie's Fireplace Inn Client Project ID: Eddie's Fireplace Inn Lab Sample ID: 1192542001 Lab Project ID: 1192542		Collection Date: 05/22/19 13:30 Received Date: 05/23/19 08:22 Matrix: Drinking Water Solids (%): Location:)	
Results by Private Individual Analysis	;		_				
Batch Information Analytical Batch: WIC5918 Analytical Method: EPA 300.0 Analyst: DMM Analytical Date/Time: 06/04/19 17:36 Container ID: 1192542001-D Analytical Batch: WIC5918 Analytical Method: EPA 300.0 Analytical Method: EPA 300.0 Analytical Date/Time: 06/04/19 18:33 Container ID: 1192542001-D		Prep Batch: WXX12851 Prep Method: METHOD Prep Date/Time: 06/04/19 10:45 Prep Initial Wt./Vol.: 10 mL Prep Extract Vol: 10 mL Prep Batch: WXX12851 Prep Method: METHOD Prep Date/Time: 06/04/19 10:45 Prep Initial Wt./Vol.: 10 mL Prep Extract Vol: 10 mL					
Parameter Alkalinity CO3 Alkalinity HCO3 Alkalinity OH Alkalinity OH Alkalinity Batch Information Analytical Batch: WTI5193 Analytical Method: SM21 2320B Analytical Date/Time: 05/24/19 11:04 Container ID: 1192542001-D	Result Qual 136000 10000 U 133000 10000 U	LOQ/CL 10000 10000 10000	DL 2500 2500 2500 2500	Units ug/L ug/L ug/L	DF 1 1 1	Allowable Limits	Date Analyzed 05/24/19 11:04 05/24/19 11:04 05/24/19 11:04 05/24/19 11:04
Parameter Conductivity Batch Information Analytical Batch: WTI5192 Analytical Method: SM21 2510B Analyst: EWW Analytical Date/Time: 05/24/19 11:04 Container ID: 1192542001-D	<u>Result Qual</u> 345	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.477	<u>Units</u> umhos/cn	<u>DF</u> n 1	<u>Allowable</u> Limits	<u>Date Analyzed</u> 05/24/19 11:04
<u>Parameter</u> pH	<u>Result Qual</u> 8.3	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.100	<u>Units</u> pH units	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u> (6.5-8.5)	<u>Date Analyzed</u> 05/24/19 11:04

Print Date: 06/07/2019 11:20:36AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of Eddie's Fireplace Inn

Client Sample ID: Eddie's Fireplace Inn Client Project ID: Eddie's Fireplace Inn Lab Sample ID: 1192542001 Lab Project ID: 1192542 Collection Date: 05/22/19 13:30 Received Date: 05/23/19 08:22 Matrix: Drinking Water Solids (%): Location:

Results by Private Individual Analysis

Batch Information

Analytical Batch: WTI5191 Analytical Method: SM21 4500-H B Analyst: EWW Analytical Date/Time: 05/24/19 11:04 Container ID: 1192542001-D
Results	of Eddie's Fireplace Inn							
Client S Client P Lab San Lab Pro	ample ID: Eddie's Fireplace I roject ID: Eddie's Fireplace Ir nple ID: 1192542001 ject ID: 1192542	nn in	C R M Si	ollection D eceived Da atrix: Drinl olids (%): ocation:	0ate: 05/22/ ate: 05/23/1 king Water	19 13:3 19 08:2	30 2	
Results	by Waters Department			_				
<u>Paramet</u> Total Nitr	er ate/Nitrite-N	<u>Result Qual</u> 200 U	<u>LOQ/CL</u> 200	<u>DL</u> 50.0	<u>Units</u> ug/L	<u>DF</u> 2	<u>Allowable</u> <u>Limits</u> (<10)	Date Analyzed 05/24/19 13:44
Batch Ir Analyt Analyt Analyt Contai	nformation ical Batch: WFI2818 ical Method: SM21 4500NO3-F st: EWW ical Date/Time: 05/24/19 13:44 ner ID: 1192542001-C							

Print Date: 06/07/2019 11:20:36AM

Method Blank					
Blank ID: MB for HBN Blank Lab ID: 1509096	1794136 [BTF/17362]	Matri	x: Water (Sur	face, Eff., Ground)	
QC for Samples: 1192542001					
Results by SM21 9223	В				
<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
E. Coli	Negative	1	1	100mL	
Total Coliform	Negative	1	1	100mL	
Batch Information Analytical Batch: BTF Analytical Method: SM Instrument: Analyst: ACF Analytical Date/Time:	17362 //21 9223B 5/23/2019 6:03:53PM				

Print Date: 06/07/2019 11:20:38AM

Method Blank

Blank ID: MB for HBN 1794279 [MXX/32441] Blank Lab ID: 1509741

QC for Samples: 1192542001

Results by EP200.8

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Aluminum	10.0U	20.0	6.20	ug/L
Antimony	0.500U	1.00	0.310	ug/L
Arsenic	2.50U	5.00	1.50	ug/L
Barium	1.50U	3.00	0.940	ug/L
Cadmium	0.250U	0.500	0.150	ug/L
Calcium	250U	500	150	ug/L
Chromium	1.00U	2.00	0.800	ug/L
Copper	0.500U	1.00	0.310	ug/L
Iron	125U	250	78.0	ug/L
Lead	0.100U	0.200	0.0700	ug/L
Magnesium	25.0U	50.0	15.0	ug/L
Manganese	0.500U	1.00	0.350	ug/L
Nickel	1.00U	2.00	0.620	ug/L
Potassium	250U	500	150	ug/L
Selenium	2.50U	5.00	1.50	ug/L
Silver	0.500U	1.00	0.310	ug/L
Sodium	250U	500	150	ug/L
Thallium	0.500U	1.00	0.310	ug/L
Zinc	5.00U	10.0	3.10	ug/L

Batch Information

Analytical Batch: MMS10525 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5 Analyst: DSH Analytical Date/Time: 5/31/2019 3:36:18PM Prep Batch: MXX32441 Prep Method: E200.2 Prep Date/Time: 5/29/2019 11:30:13AM Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Matrix: Water (Surface, Eff., Ground)

Print Date: 06/07/2019 11:20:42AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1192542 [MXX32441] Blank Spike Lab ID: 1509742 Date Analyzed: 05/31/2019 15:39

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1192542001

Results by EP200.8

		Blank Spike	e (ug/L)	
<u>Parameter</u>	<u>Spike</u>	Result	<u>Rec (%)</u>	
Aluminum	1000	1020	102	
Antimony	1000	1050	105	
Arsenic	1000	971	97	
Barium	1000	967	97	
Cadmium	100	100	100	
Calcium	10000	10000	100	
Chromium	400	382	96	
Copper	1000	1000	100	
Iron	5000	4780	96	
Lead	1000	1020	102	
Magnesium	10000	10200	102	
Manganese	500	514	103	
Nickel	1000	1020	102	
Potassium	10000	10100	101	
Selenium	1000	997	100	
Silver	100	96.9	97	
Sodium	10000	10200	102	
Thallium	10	10.0	100	
Zinc	1000	1030	103	

Batch Information

Analytical Batch: MMS10525 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5 Analyst: DSH Prep Batch: MXX32441 Prep Method: E200.2 Prep Date/Time: 05/29/2019 11:30 Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 06/07/2019 11:20:44AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix Spike Summary

Original Sample ID: 1509746 MS Sample ID: 1509749 MS MSD Sample ID: Analysis Date: 05/31/2019 15:54 Analysis Date: 05/31/2019 15:57 Analysis Date: Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1192542001

Results by EP200.8

		Mat	rix Spike (u	g/L)	Spike	Duplicate	e (ug/L)			
<u>Parameter</u>	Sample	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	<u>Rec (%)</u>	CL	<u>RPD (%)</u>	RPD CL
Aluminum	10.0U	1000	931	93				70-130		
Antimony	0.500U	1000	999	100				70-130		
Arsenic	2.50U	1000	951	95				70-130		
Barium	1.50U	1000	931	93				70-130		
Cadmium	0.250U	100	95	95				70-130		
Calcium	250U	10000	9140	91				70-130		
Chromium	1.00U	400	373	93				70-130		
Copper	24.8	1000	984	96				70-130		
Iron	166J	5000	4780	92				70-130		
Lead	0.215	1000	981	98				70-130		
Magnesium	25.0U	10000	9510	95				70-130		
Manganese	0.488J	500	501	100				70-130		
Nickel	0.822J	1000	982	98				70-130		
Potassium	250U	10000	9440	94				70-130		
Selenium	2.50U	1000	968	97				70-130		
Silver	0.500U	100	90.5	91				70-130		
Sodium	50800	10000	61700	108				70-130		
Thallium	0.500U	10.0	9.48	95				70-130		
Zinc	11.3	1000	986	98				70-130		

Batch Information

Analytical Batch: MMS10525 Analytical Method: EP200.8 Instrument: Perkin Elmer NexIon P5 Analyst: DSH Analytical Date/Time: 5/31/2019 3:57:12PM Prep Batch: MXX32441 Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 5/29/2019 11:30:13AM Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 06/07/2019 11:20:45AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Method Blank					
Blank ID: MB for HBN 179 Blank Lab ID: 1509260	94172 [STS/6283]	Matrix	: Water (Surfa	ace, Eff., Ground)	
QC for Samples: 1192542001					
Results by SM21 2540C					
Parameter Total Dissolved Solids	<u>Results</u> 7000J	<u>LOQ/CL</u> 10000	<u>DL</u> 3100	<u>Units</u> ug/L	
Batch Information					
Analytical Batch: STS62 Analytical Method: SM21 Instrument: Analyst: EWW Analytical Date/Time: 5/2	83 2540C 24/2019 3:53:46PM				

Print Date: 06/07/2019 11:20:49AM

Γ			7			
	Duplicate Sample Summary					
(1	Original Sample ID: 119252800 Duplicate Sample ID: 1509263	1	An Ma	alysis Date: 05/2 trix: Drinking Wa	4/2019 15:53 ter	
(QC for Samples:					
	1192542001					
F	Results by SM21 2540C]			
1	NAME	<u>Original</u>	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
٦	Total Dissolved Solids	163000	171000	ug/L	4.80	(< 5)
-	Batch Information					
5	Analytical Batch: STS6283					
	Analytical Method: SM21 2540C Instrument:					
	Analyst: EWW					

Print Date: 06/07/2019 11:20:50AM

3lank Spike Summary								
Blank Spike ID: LCS for H Blank Spike Lab ID: 15092 Date Analyzed: 05/24/20	BN 1192542 [ST: 261 19 15:53	S6283]	Spike Duplicate ID: LCSD for HBN 1192542 [STS6283] Spike Duplicate Lab ID: 1509262 Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 11925	42001							
Results by SM21 2540C								
	Blar	nk Spike (ug/L)	S	pike Duplic	ate (ug/L)			
<u>Parameter</u> Total Dissolved Solids	<u>Spike</u> <u>R</u> 333000 3	Result <u>Rec (%)</u> 14000 94	<u>Spike</u> 333000	<u>Result</u> 325000	<u>Rec (%)</u> 98	<u>CL</u> (75-125)	<u>RPD (%)</u> 3.40	<u>RPD CL</u> (< 5)
Batch Information								
Analytical Batch: STS6283 Analytical Method: SM21 2 Instrument: Analyst: EWW	540C							

Print Date: 06/07/2019 11:20:51AM

lethod Blank					
Blank ID: MB for HBN 179 Blank Lab ID: 1509577	94221 (WFI/2818)	Matrix	x: Water (Surfa	ace, Eff., Ground)	
QC for Samples:					
Results by SM21 4500NC	13-F	J			
<u>'arameter</u> litrate-N	<u>Results</u> 100U	<u>LOQ/CL</u> 200	<u>DL</u> 50.0	<u>Units</u> ua/L	
litrite-N	100U	200	50.0	ug/L	
otal Nitrate/Nitrite-N	54.6J	200	50.0	ug/L	
tch Information					
Analytical Batch: WFI28	18 1.4500NO3 E				
Instrument: Astoria segn	nented flow				
Analyst: EWW					
Analytical Date/Time: 5/2	24/2019 12:18:27PM				

Print Date: 06/07/2019 11:20:53AM

Method Blank								
Blank ID: MB for HBN 179 Blank Lab ID: 1509579	94221 (WFI/2818)	Matrix: Water (Surface, Eff., Ground)						
QC for Samples: 1192542001								
Results by SM21 4500NC)3-F]						
Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>				
Nitrate-N	100U	200	50.0	ug/L				
Nitrite-N	100U	200	50.0	ug/L				
I otal Nitrate/Nitrite-N	55.4J	200	50.0	ug/L				
3atch Information								
Analytical Batch: WFI28 Analytical Method: SM2 Instrument: Astoria segn Analyst: EWW Analytical Date/Time: 5/3	18 1 4500NO3-F nented flow 24/2019 1:03:57PM							

Print Date: 06/07/2019 11:20:53AM

метной вталк					
Blank ID: MB for HBN 1 Blank Lab ID: 1509581	794221 (WFI/2818)	Matrix	k: Water (Surfa	ace, Eff., Ground)	
QC for Samples: 1192542001					
Results by SM21 4500N	103-F				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
Nitrate-N	100U	200	50.0	ug/L	
Nitrite-N	100U	200	50.0	ug/L	
Total Nitrate/Nitrite-N	58.8J	200	50.0	ug/L	
Analytical Batch: WFI2 Analytical Method: SM: Instrument: Astoria seg Analyst: EWW	1818 21 4500NO3-F gmented flow				

Print Date: 06/07/2019 11:20:53AM

Blank Spike Summary				
Blank Spike ID: LCS for Hl Blank Spike Lab ID: 15095 Date Analyzed: 05/24/20	BN 1192542 576 19 12:16	[WFI2818]		Matrix: Water (Surface, Eff., Ground)
QC for Samples:				
Results by SM21 4500NO3	3-F			
		Blank Spike	e (ug/L)	
Parameter_	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Nitrate-N	2500	2600	104	(70-130)
Nitrite-N	2500	2620	105	(90-110)
Fotal Nitrate/Nitrite-N	5000	5230	105	(90-110)
Batch Information				
Analytical Batch: WFI2818 Analytical Method: SM21 4 Instrument: Astoria segme Analyst: EWW	500NO3-F ented flow			

Print Date: 06/07/2019 11:20:55AM

Blank Spike ID: LCS for F Blank Spike Lab ID: 1509 Date Analyzed: 05/24/20	HBN 1192542 9578 019 13:02	[VVF12818]		Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1192	542001			
Results by SM21 4500NC	03-F		_	
		Blank Spike	e (ug/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Nitrate-N	2500	2460	99	(70-130)
Nitrite-N	2500	2420	97	(90-110)
Total Nitrate/Nitrite-N	5000	4880	98	(90-110)
Batch Information				
Analytical Batch: WFI281 Analytical Method: SM21 Instrument: Astoria segm Analyst: EWW	8 4500NO3-F nented flow			

Print Date: 06/07/2019 11:20:55AM

Blank Spike ID: 1509 Blank Spike Lab ID: 1509 Date Analyzed: 05/24/20	IBN 1192542 580)19 14:01	[VVF12818]		Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1192	542001			
Results by SM21 4500NO	3-F		_	
		Blank Spike	e (ug/L)	
Parameter	<u>Spike</u>	<u>Result</u>	Rec (%)	CL
Nitrate-N	2500	2680	107	(70-130)
Nitrite-N	2500	2580	103	(90-110)
Total Nitrate/Nitrite-N	5000	5260	105	(90-110)
Batch Information				
Analytical Batch: WFI2818 Analytical Method: SM214 Instrument: Astoria segm Analyst: EWW	3 4500NO3-F ented flow			

Print Date: 06/07/2019 11:20:55AM

Matrix Spike Summary										
Original Sample ID: 1192 MS Sample ID: 1509547 MSD Sample ID: 150954	450001 MS 48 MSD				Analysis Analysis Analysis	Date: 0 Date: 0 Date: 0	5/24/2019 5/24/2019 5/24/2019	13:52 13:54 13:56		
					Matrix: [Drinking	Water			
QC for Samples: 119254	2001									
Results by SM21 4500NC	03-F									
		Ma	trix Spike ((ug/L)	Spike	e Duplicat	e (ug/L)			
Parameter Total Nitrate/Nitrite-N	<u>Sample</u> 8720	<u>Spike</u> 20000	<u>Result</u> 32100	<u>Rec (%)</u> 117 *	<u>Spike</u> 20000	<u>Result</u> 31400	<u>Rec (%)</u> 114 *	<u>CL</u> 90-110	<u>RPD (%)</u> 2.10	<u>RPD CL</u> (< 25)
Batch Information										
Analytical Batch: WFI28 Analytical Method: SM21 Instrument: Astoria segm Analyst: EWW Analytical Date/Time: 5/2	18 4500NO3-F hented flow 24/2019 1:54:42F	PM								

Print Date: 06/07/2019 11:20:56AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Matrix Spike Summary										
Original Sample ID: 1192511001 MS Sample ID: 1509549 MS MSD Sample ID: 1509550 MSD			Analysis Date: 05/24/2019 12:23 Analysis Date: 05/24/2019 12:25 Analysis Date: 05/24/2019 12:27 Matrix: Drinking Water							
QC for Samples: 1192542	001									
Results by SM21 4500NO3	3-F									
		Mat	trix Spike (ug/L)	Spike	e Duplicat	e (ug/L)			
<u>Parameter</u> Total Nitrate/Nitrite-N	<u>Sample</u> 13800	<u>Spike</u> 25000	<u>Result</u> 38600	<u>Rec (%)</u> 99	<u>Spike</u> 25000	<u>Result</u> 40500	<u>Rec (%)</u> 107	<u>CL</u> 90-110	<u>RPD (%)</u> 5.00	<u>RPD CL</u> (< 25)
Batch Information Analytical Batch: WFI2818 Analytical Method: SM214 Instrument: Astoria segme Analyst: EWW Analytical Date/Time: 5/24	3 4500NO3-F ented flow 1/2019 12:25:27	PM								

Print Date: 06/07/2019 11:20:56AM

Duplicate Sample Sur	nmary				
Original Sample ID: 1 ² Duplicate Sample ID:	192528001 1509498		Analysis Date: 0 Matrix: Drinking	5/24/2019 10:55 Water	
QC for Samples:					
1192542001					
Results by SM21 4500	-Н В				
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
pH	7.0	7.00	pH units	0.00	(< 5)
Patch Information	·				
Analytical Batch: WTI5 Analytical Method: SM Instrument: Titration Analyst: EWW	191 21 4500-Н В				

- Duplicate Sample Sum	marv				
Original Sample ID: 119 Duplicate Sample ID: 1	92579002 509499		Analysis Date: 0 Matrix: Water (S	5/24/2019 12:09 urface, Eff., Grour	nd)
QC for Samples:					
1192542001					
Results by SM21 4500-I	l B				
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
pН	7.8	7.90	pH units	1.30	(< 5)
Potch Information					
Analytical Batch: WTI519 Analytical Method: SM2 Instrument: Titration Analyst: EWW	91 1 4500-Н В				

SGS	

Blank Spike Summary			_	
Blank Spike ID: LCS for HBN Blank Spike Lab ID: 1509499 Date Analyzed: 05/24/2019	N 1192542 [5 09:18	WTI5191]		Matrix: Water (Surface, Eff, Ground)
QC for Samples: 1192542	001			
Results by SM21 4500-H B				
	BI	ank Spike (pH units)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
рН	6.98	7.01	100	(99-101)
Batch Information				
Analytical Batch: WTI5191 Analytical Method: SM21 450 Instrument: Titration Analyst: EWW	0-H B			
Print Date: 06/07/2019 11:21:00AM				

Method Blank							
Blank ID: MB for HBN Blank Lab ID: 150950	1794212 [WTI/5192] 2	Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1192542001							
Results by SM21 2510)B						
Parameter Conductivity	<u>Results</u> 1.90*	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.477	<u>Units</u> umhos/cm			
Batch Information							
Analytical Batch: WT Analytical Method: S Instrument: Titration Analyst: EWW Analytical Date/Time	TI5192 SM21 2510B : 5/24/2019 9:43:24AM						

Print Date: 06/07/2019 11:21:02AM

Dunlicate Sample Summary	,				
Original Sample ID: 1192528	3001 03		Analysis Date: 05 Matrix: Drinking V	/24/2019 10:55 Vater	
QC for Samples:					
1192542001					
11323-2001					
Dogulto by SM21 2510P					
NAME	Original	Duplicate	Units	<u>RPD (%)</u>	<u>RPD CL</u>
Conductivity	234	234	umhos/cm	0.00	(< 20)
Batch Information					
Analytical Batch: WTI5192 Analytical Method: SM21 251 Instrument: Titration Analyst: EWW	0B				

SGS	

Blank Spike Summary			
Blank Spike ID: LCS for HBN 11 Blank Spike Lab ID: 1509501 Date Analyzed: 05/24/2019 09	92542 [WTI5192] 9:12		
QC for Samples: 1192542001		Matrix: Water (Surfac	ce, Eff., Ground)
Results by SM21 2510B		T	
	Blank Spike (umł	nos/cm)	
Parameter_	Spike Result	Rec (%)	<u>CL</u>
Conductivity	10.1 10.9	108	(90-110)
Batch Information			
Analytical Batch: WTI5192 Analytical Method: SM21 2510B Instrument: Titration Analyst: EWW			
Print Date: 06/07/2019 11:21:04AM			

SGS	

_	Method Blank						
	Blank ID: MB for HBN Blank Lab ID: 1509504	1794213 [WTI/5193] 4		Matrix:	Water (Surfac	e, Eff., Ground)	
	QC for Samples: 1192542001						
_	Results by SM21 2320)B	<u> </u>				
	Parameter	<u>Results</u>	LOG	<u> 2/CL</u>	<u>DL</u>	<u>Units</u>	
	Alkalinity	3150J	100	00	2500	ug/L	
-[Batch Information						
	Analytical Batch: WT Analytical Method: S Instrument: Titration	15193 M21 2320B					
	Analytical Date/Time:	5/24/2019 9:43:24AM					
_)

Print Date: 06/07/2019 11:21:05AM

Duplicate Sample Summ	ary				
Original Sample ID: 1192 Duplicate Sample ID: 150	528001 9506		Analysis Date: Matrix: Drinking	05/24/2019 10:55 g Water	
QC for Samples:					
1192542001					
Regults by SM21 2320B					
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	<u>RPD CL</u>
Alkalinity	91200	91230	ug/L	0.08	(< 25)
Batch Information					
Analytical Batch: WTI5193 Analytical Method: SM212 Instrument: Titration Analyst: EWW	2320B				
Print Data: 06/07/2040 44:04:004	N.A.				
Fint Date. 00/07/2019 11:21:06A	IVI				

Dunlicata Samnla Summ					
Original Sample ID: 1192	579002		Analysis Date:	05/24/2019 12:09	ad)
OC for Samples	9307		Mallix. Walei (Sunace, En., Grou	nu)
1102542001					
1192342001					
Results by SM21 2320B					
	Original	Duplicate	Units	RPD (%)	RPD CL
Alkalinity	42100	42150	ug/L	0.10	(< 25)
Potch Information					, ,
Analytical Batch: WTI5193 Analytical Method: SM212 Instrument: Titration Analyst: EWW	2320B				
Print Date: 06/07/2019 11:21:06AI	M				

SGS North America Inc.

SGS	

Blank Spike Summary			
Blank Spike ID: LCS for HBN 1 Blank Spike Lab ID: 1509505 Date Analyzed: 05/24/2019 0	192542 [WTI5193] 9:52		
QC for Samples: 119254200	1	Matrix: W	vater (Surface, Eff., Ground)
Results by SM21 2320B			
	Blank Spike (u	g/L)	
<u>Parameter</u> Alkalinity	<u>Spike</u> <u>Result</u> 250000 238000	<u>Rec (%)</u> 95	<u>CL</u> (85-115)
Batch Information			
Analytical Batch: WTI5193 Analytical Method: SM21 2320B Instrument: Titration Analyst: EWW			
Print Date: 06/07/2019 11:21:08AM			

+

Method Blank							
Blank ID: MB for HBN 1 Blank Lab ID: 1511264	794605 [WXX/12851]	Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1192542001							
Results by EPA 300.0							
Parameter_	<u>Results</u>	LOQ/CL	DL	<u>Units</u>			
Chloride	100U	200	50.0	ug/L			
Sulfate	1000	200	50.0 50.0	ug/L ug/l			
atch Information							
Analytical Batch: WIC5	5918	Prep Ba	atch: WXX1285	1			
Instrument: 930 Metrol	A 300.0 hm compact IC flex	Prep Me Prep Da	ate/Time: 6/4/20) 19 10:45:00AM			
Analyst: DMM		Prep Ini	tial Wt./Vol.: 10	mL			
	3/4/2010 2·32·42PM	Prep Ex	tract Vol: 10 m	L			

Print Date: 06/07/2019 11:21:09AM

Blank Spike Lab ID: 1 Date Analyzed: 06/0	511265 4/2019 14:51	[.1	Matrix: Water (Surface Eff. Ground)
QC for Samples: 1	192542001			
Results by EPA 300.0				
		Blank Spike	e (ug/L)	
Parameter	Spike	Result	<u>Rec (%)</u>	CL
Chloride	5000	4980	100	(90-110)
Fluoride	5000	5020	100	(90-110)
Sulfate	5000	4940	99	(90-110)
Batch Information	ì			
Analytical Batch: WIC Analytical Method: EP Instrument: 930 Metro Analyst: DMM	5918 PA 300.0 phm compact IC fle	x		Prep Batch: WXX12851 Prep Method: METHOD Prep Date/Time: 06/04/2019 10:45 Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 10 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 06/07/2019 11:21:11AM

Matrix Spike Summary

Original Sample ID: 1510901 MS Sample ID: 1511269 MS MSD Sample ID: 1511270 MSD Analysis Date: 06/04/2019 15:48 Analysis Date: 06/04/2019 15:59 Analysis Date: 06/04/2019 16:20 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1192542001

Results by EPA 300.0											
		Ма	itrix Spike (ug/L)	Spik	e Duplicate	e (ug/L)				
Parameter	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%</u>	5)	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Chloride	100U	5000	5540	111 *	5000	5630	113	*	90-110	1.50	(< 15)
Fluoride	100U	5000	4580	92	5000	4490	90	*	90-110	2.10	(< 15)
Sulfate	100U	5000	4650	93	5000	4720	94		90-110	1.50	(< 15)

Batch Information

Analytical Batch: WIC5918 Analytical Method: EPA 300.0 Instrument: 930 Metrohm compact IC flex Analyst: DMM Analytical Date/Time: 6/4/2019 3:59:54PM Prep Batch: WXX12851 Prep Method: EPA 300.0 Extraction Waters/Liquids Prep Date/Time: 6/4/2019 10:45:00AM Prep Initial Wt./Vol.: 10.00mL Prep Extract Vol: 10.00mL

Print Date: 06/07/2019 11:21:12AM

S Chair	SGS n of Custod	SC 200 W. F Ph: 90 y & Sample Receip	SS North Americ otter Drive, Anchora 7-562-2343 / Fax: 90 ot Form for Pr	a Inc. ge, AK 99518 07-561-5301 ivate Drin	king	Wate	r Anal	yses (Non-P	 W	11	925	;42
CLIEN	INFORMATION												
Compa	ny Name: (100001 W	lilson Fairbank	S Phone:				•	I	Please inc	licate the	water so	ource for these :	samples:
Contact	Krieta	Englisher and	× 1							Private	residen	tial well/water sy	ystem
F-mail (Bequired for	n rreibuger							· · ·				
reportin	g):							 			WODI		
Adures	5, .									Non-re	gulated	private water sy	stem
City/Sta	ite/Zip								6	Other (plea	ise list):		<u> </u>
SAMPL	E INFORMATION	1				CAN K	T						
Please	complete all app di	licable fields below inclu te/time, and all analyses	ding sample locatio requested.	n, collection	oliform SM9223B 1ce/Absence)	itrate/Nitrite (SM21 03-F)	c (As) by 200.8	pH, Alk, TDS, Cond, other)	Pb/Cu, VOC, 200.8 metals,	oliform (SM9223 tray)–SEAWATER	5 Heterotrophic Plate		
	Sample Identifica	tion/Location	Collection Date	Collection Time (am/pm)	Total C (Prese	Total N 4500NG	Arseni	PIWA (anions	Other (etc)	Total C Quanti	SM921 Count		
()))	Eddie's	Fireplace Inn	5/22/19	1330	X	X	X	X			• •		
)									
Colloc		Pirr Data	Time	Received by	l ah Bi	L			L			Date	Time
Conect	ea/Reiniguisneu	By. Date	Time	2	Z	· · ·	NJW					5h3le	1 0822
Method Sample	l of payment: Comments/Spec	prepaid Cash ial Instructions:	C check #	C credit	card				· · · · · · · · · · · · · · · · · · ·	Am	iount pa	id: \$	
	PIWA	coc filled o	ut in lab u	using ca	olifo	m	COC.	N2	n s/	23 hg			
			SAMP	LE CONDITIC)n (Fof	R LAB U	SE ONL)	n					
			yes no n/a	a		Deliver	. Method			-		—	
Are sam	ples RUSH or SHO ave you notified the	RT HOLD TIME? lab?				Denver	,	· ⊔	Client	Li Ale	rt Courie	r 🖵 Other:	
For pres microbio	erved waters (other logical analyses), w	than VOA vials, LL-Mercury o as pH verified and compliant?		l		Temper	ature upo	on receipt	(if applica	able): 🛔	1.1	051	
Are the	re any issues with ct containers, past	the samples? (i.e. frozen, 30 hour hold time)]								·- · ·	
		This section	used for immedia	te notificati	on of L	JNSATI	SFACTO	DRY col	iform re	sults on	ly:		
Analysis	Began:	1	Reported to:										
Analyst	:		Reported to:										_
	Total Coliform		Signature										
Result	E.Coli/Fecal			·						Initia	ıls	Date	Time
	Other Bacteria		Email Positiv	ve Total Colife	orms/E.	coli to F	Project M	lanager,	QC Notic	es, Micro	o, and D	ata Manageme	nt.

Chain of Custody for Drinking Water Total Coliform Bacteria Samples

200 West Potter Rd Anchorage, AK 99518 (907) 562-2343

*Water System Name:						Info R	equired for ADEC
Contact: Mike	Swai	n				Submit	al- Missing or incorrect
Email:						info n	nay result in a delay.
Invoice to: Shanno	4 VW	11500	F9.	irbani	45	*PWSID #:	
Phone:	· · · · · · · · · · · · · · · · · · ·		Fax:			*Facility ID:	
City:	L	State		7:	94 ^{- 1}	*Sample Po	int:
Durshana Only (A 57%	F. 1. 1					*Residual C	(mg/L)
Purchase Order/AFE#:	AHN /	trister	h Freis	buger_			192542
Additional Reports to:	901	- 45	<u> 8 31.</u>	46			
*Sample Location:	Eddi	e ⁿ s fi	restau	Enn			
*Date/Time of	25	12	1010	1120			
Collection:	MM	חח			AM/PM	Analy	veis Requested
				11111111111	••	7.1101	VISIS REQUESIEU
							19223B-Total Coli P/A efault)
· · ·	NN 1	0	. T			SN	19223-Total Coli
Sample Collector:	Mike	2 Ju	oin			L' Qu	antitray MPN
	i	Signature		Initial	S	SN	19215-Heterotrophic
Comple Type							
Sample Type.	□ Drink □ Saltw	ng vvater ater	Sample	1D "Eddi that held	ie's Friepl sample G	lace Inn	"per Elploc contal NSW S/23/19
Received by:	4	: :	VTW	Date: 6	5/23/19	Tin	ne: 0822
	Signature	Í	Initials		MM/DD/YY		HH:MM
Temperature: □Amb	ient or <u>II</u>	<u>. </u>	DST	Delivery:	Client c	or (d) Other	(specify): <u>Alert</u>
Please note if the al	oove inform	ation is mi	issing it may	/ result in lat	e reporting	g to the sta	te for compliance
 Sample over 30 ho The sample was ro The sample was n 	ours old, re aceived fro ot received	sults may zen or wit i in a labo	Sample Co be unrelia th visible io ratory issu	ondition: ble. <i>Note:</i> e, and was e, pre-steri	Source w rejected. lized cont	ater HPC	has 8 hour holding t was rejected.
This section	used for	immedia	te notifica	tion of UN	SATISFA	CTORY	results only:
Analysis Began:			· · ·	□ SM9223E	B Presence	/Absence	
Analyst:				□ SM9223	QuantTray		
	Total Coli	form:		· · · ·			
Result:	E. coli / F	ecal Colife	orm:				
	Other Bac	teria:					
Reported to:			By: Fax:	F	Phone:		Email:
Reported to:			By: Fax:	f	Phone:		Email:
Analyst:						Email Posi	tive Total Coliform/E.coli
Signature			Initials		Date/Time	Project Ma and Data M	anager, QC Notices, Micro anagement. Notify ADEC PWSID is present

GEND PBI							
Standard Service	AIR CARGO	- 317 1 27	Priority Service ACEPA Small Package Service	∖K ⊡			
TOHOSON DUILING	UNT NUMBER AIR W. (AIR CONSIGN Copies 1, 2	GOTIABLE AYBILL NMENT NOTE) 2, 3 and 4 of this Air Waybi	ACE Air Carg 5901 LOCKHEED AVE. ANCHORAGE, ALASKA 995 Il are originals and have the sa	0 i02 ime validity.			
ISIGNEE'S NAME AND ADDRESS	COUNT NUMBER It is agreed that the (except as noted) for HEREOF. THE SHI LIMITATION OF LIA value for carriage. release carrier of a freight charges withing Received in coord	e goods described herein a pr carriage SUBLECT TO TH PPER'S ATTENTION IS DF ABILITY. Shipper entay increa and paying a supplemental any payment dispute betwee in 48 hours of billing by carri ondition	are accepted is apparent good the convolutions for Convinact IAWN OF THE NOTICE CONCE as south limitation of ilability by charge if required. Shipper or en himself and the convince gr.	order and cendition OMT THE REVERSE IRNING CARRIERS' declaring a higher nis agent agrees to mentiting unpaid			
ING CARRIER'S AGENT NAME AND CITY	Place TO EXPEDITE MO AS PER TARIFE RI ALSO NOTIFY NAM	VEMENT, SHIPMENT MAY ULE UNLESS SHIPPER GIN ME AND ADDRESS	BE DIVERTED TO NOTOR DE LES OTHER INSTRUCTIONS HE CHECK	ONE L DMESTIC			
NT'S IATA CODE ACCOUNT NO.		ORMATION	200	TERNATIONAL SUISE			
AIRPORT OF DESTINATION AIRPORT OF DESTINATION AIRPORT OF DESTINATION AIRPORT OF DESTINATION AIRPORT OF DESTINATION FLIGHT/DATE	TO BY CLEBENCY CHE V USE ONLY AMOUNT OF INSUF	YTVAL OTHER DECLARE STOLL PP COLL RANCE INSUE With c insue	DVALUE FOR CARRIAGE DECLAREI RANCE - If shipper requests insu- onditions on reverse hereof, in d in figures in box marked amoun	D VALUE FOR CUSTOMS			
OF GROSS kg RATE CLASS CHARGEA ES WEIGHT 10 WEIGHT WEIGHT	BLE RATE T CHARGE	TOTAL	NATURE AND QUANTIT (INCL. DIMENSIONS O	(OF GOODS R VOLUME)			
ID ACEPAK ID	16-52 1	6-82	, Red coole	E TIME			
PBEPAID WEIGHT CHARGE COLLECT	P-UP ZONE PICKUP CHARGES OR B. K. DEL ZONE DELIVERY CHARGES DE	6. 9.2 IIGIN ADVANCE CHARGES	DESCRIPTION OF ORIGIN A DESCRIPTION OF DEST. AD	DVANCE			
TAX TOTAL OTHER CHARGES DUE AGENT	C. L. OTHER CHARGES AND DESCRIPTION F. S. D.	the face hereof are corre properly described by name lations, and for internation	HAZMAT YES NO Ct and that insofar as any part and is in proper condition for carr al shipments, the current Intern	MS EPAID COLLECT of the consignment age by air according ational Air Transport			
COD		SIGNATURE OF SH	IPPER OR HIS AGENT				
URRENCY CONVERSION HATES	SZZ19 (Date) (Time) at Notified on Notified on Notified on	(Place)	SIGNATURE OF ISSUING CARF 31719 COPY 5 AIRPORT OF DEST	NER OR ITS AGENT			

Alert Expeditors Inc.

#393414

Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

Date Johnson Prilling From Advance Charges 🗖 Prepay D Account 🗇 Collect 🗖 PO#ACE 3171274 Job # Samplas Shipped Signature Total Charge ace 44 of 4 Received By

H

e-Sam<u>ple Receipt Form</u>

<u> 369</u>	SGS Workorder #:	1	1925	42		9 2 5 4	2
	Review Criteria	Condition (Yes,	No, N/A	Exce	ptions Not	ed below	
Chain	of Custody / Temperature Requi	rements	N	A Exemption per	mitted if sampl	er hand carries/deliv	ers.
	Were Custody Seals intact? Note # &	location N/A		•			
	COC accompanied s	amples? Yes					
DOD: We	re samples received in COC corresponding	coolers? N/A					
	N/A **Exemption permitted if	chilled & colle	cted <8 hour	s ago, or for samp	oles where chill	ing is not required	
Tempe	rature blank compliant* (i.e., 0-6 °C afte	er CF)? No	Cooler ID:	1	@	11.1 °C Therm. ID:	D51
		N/A	Cooler ID:		@	°C Therm. ID:	
If samples received withou documented instead & "COOL	ut a temperature blank, the "cooler temperature" wi _ER TEMP" will be noted to the right. "ambient" or	ill be "chilled" N/A	Cooler ID:		@	°C Therm. ID:	
will	be noted if neither is available.	N/A	Cooler ID:		@	°C Therm. ID:	
		N/A					
*If	>6°C, were samples collected <8 hours	s ago? N/A					
	If <0°C, were sample containers ice	e free? N/A					
Note: Identify conta	ainers received at non-compliant tempe	rature.	Proceed ou	utside of temp pe	er client.		
	Use form FS-0029 if more space is r	needed.					
Holding Time	/ Documentation / Sample Condition P	oquiromonte	Noto: Pofor	to form E 082 "Se	ample Guide" fr	or specific holding tin	000
	Were samples received within holding	a time? Yes	Note. Relet	10 101111 F-003 3a		or specific holding in	iles.
		3					
Do samples match C	COC** (i.e.,sample IDs,dates/times colle	ected)? Yes					
**Note: If times	differ <1hr, record details & login per C	COC.					
***Note: If sample information	on containers differs from COC, SGS will default to	COC information					
Were analytical request	ts clear? (i.e., method is specified for a	nalyses Yes					
with	multiple option for analysis (Ex: BTEX,	Metals)					
					1		
Mara proper contair	a a construction a constructin a construction a construction a construction a construction a con		N/		permitted for m	etals (e.g,200.8/6020	<u>JA).</u>
were proper contail	ners (type/mass/volume/preservative	Juseu?					
	Volatile / LL-Hg Reg	uirements					
Were Trip Blan	ks (i.e., VOAs, LL-Hg) in cooler with sa	mples? N/A					
Were all water VOA	vials free of headspace (i.e., bubbles ≤	6mm)? N/A					
Were	all soil VOAs field extracted with MeOH	I+BFB? N/A					
Note to	Client: Any "No", answer above indicates no	on-compliance	with standar	d procedures and	may impact da	ata quality.	
	Additiona	al notes (if a	pplicable)	:			

Sample Containers and Preservatives

	Condition	<u>container 14</u>		<u>Condition</u>
a2S2O3 for Chlorine Redu NO3 to pH < 2 2SO4 to pH < 2	ок ок ок			
	2S2O3 for Chlorine Redu IO3 to pH < 2 SO4 to pH < 2 Preservative Required	Condition2S2O3 for Chlorine ReduOKIO3 to pH < 2	Condition2S2O3 for Chlorine ReduOKIO3 to pH < 2	Condition2S2O3 for Chlorine ReduOKIO3 to pH < 2

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

OK - The container was received at an acceptable pH for the analysis requested.

- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized
- container and therefore was not suitable for analysis.

PA - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

PH - The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks 2355 Hill Rd. Fairbanks, AK 99701 (907)479-0600

Report Number: **1192543**

Client Project: Const Yard Well

Dear Kristen Freiburger,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins Project Manager Jennifer.Dawkins@sgs.com Date

Print Date: 06/07/2019 11:22:12AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com Results via Engage

Member of SGS Group

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks

SGS Project: 1192543

Project Name/Site: Const Yard Well

Refer to sample receipt form for information on sample condition.

WTI/5192] 1509502 MB

2510B - Conductivity - Conductivity of the MB was detected above the LOQ. Associated samples are greater than 10X the MB conductivity.

* QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to the associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at <<u>http://www.sgs.com/en/Terms-and-Conditions.aspx></u>. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

*	The analyte has exceeded allowable regulatory or control limits.
!	Surrogate out of control limits.
В	Indicates the analyte is found in a blank associated with the sample.
CCV/CVA/CVB	Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB	Closing Continuing Calibration Verification
CL	Control Limit
DF	Analytical Dilution Factor
DL	Detection Limit (i.e., maximum method detection limit)
E	The analyte result is above the calibrated range.
GT	Greater Than
IB	Instrument Blank
ICV	Initial Calibration Verification
J	The quantitation is an estimation.
LCS(D)	Laboratory Control Spike (Duplicate)
LLQC/LLIQC	Low Level Quantitation Check
LOD	Limit of Detection (i.e., 1/2 of the LOQ)
LOQ	Limit of Quantitation (i.e., reporting or practical quantitation limit)
LT	Less Than
MB	Method Blank
MS(D)	Matrix Spike (Duplicate)
ND	Indicates the analyte is not detected.
RPD	Relative Percent Difference
U	Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

Print Date: 06/07/2019 11:22:15AM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary							
Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	Matrix			
Const Yard Well	1192543001	05/22/2019	05/23/2019	Drinking Water			
Method	Method Desc	<u>ription</u>					
SM21 2320B	SM21 2320B Alkalinity as CaCO3 w/ PIWA						
SM21 2510B	Conductivity	SM2510B w/ PIW/	4				
SM21 2340B	Hardness as	CaCO3 by ICP-M	S				
EPA 300.0	Ion Chromato	graphic Analysis	w/ PIWA				
EP200.8	Metals in Wa	ter by ICP-MS PIV	VA				
SM21 4500NO3-F	Nitrate/Nitrite	Flow injection Pre	es.				
SM21 4500-H B	pH Analysis v	v/ PIWA					
SM21 9223B	Total Coliforn	n P/A Qualitative					
SM21 2540C	Total Dissolve	ed Solids SM1825	40C w/PIWA				

Detectable Results Summary

Client Sample ID: **Const Yard Well** Lab Sample ID: 1192543001 **Metals by ICP/MS Microbiology Laboratory**

Private Individual Analysis

Parameter	<u>Result</u>	<u>Units</u>
Hardness as CaCO3	46500	ug/L
E. Coli	Negative	100mL
Total Coliform	Negative	100mL
Alkalinity	50500	ug/L
Calcium	9990	ug/L
Chloride	3590	ug/L
Conductivity	121	umhos/cm
Copper	2.17	ug/L
HCO3 Alkalinity	50500	ug/L
Iron	428	ug/L
Lead	0.243	ug/L
Magnesium	5230	ug/L
Manganese	329	ug/L
pH	7.8	pH units
Potassium	2570	ug/L
Sodium	5240	ug/L
Sulfate	5180	ug/L

Print Date: 06/07/2019 11:22:16AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of Const Yard Well							
Client Sample ID:Const Yard WellCoClient Project ID:Const Yard WellReLab Sample ID:1192543001MaLab Project ID:1192543ScLab Project ID:1192543Lo			Collection Date: 05/22/19 10:00 Received Date: 05/23/19 08:22 Aatrix: Drinking Water Solids (%): Location:				
Results by							
Parameter Total Dissolved Solids	<u>Result Qual</u> 106000 *	<u>LOQ/CL</u> 10000	<u>DL</u> 3100	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u> (<500)	Date Analyzed 05/24/19 15:53
Batch Information Analytical Batch: STS6283 Analytical Method: SM21 2540C Analyst: EWW Analytical Date/Time: 05/24/19 15:53 Container ID: 1192543001-A							

Results of Const Yard Well							
Client Sample ID: Const Yard Well Client Project ID: Const Yard Well Lab Sample ID: 1192543001 Lab Project ID: 1192543	C R M S	ollection D eceived Da atrix: Drink blids (%): ocation:	ate: 05/22/ ate: 05/23/ ² ting Water	19 10:00 19 08:22			
Results by Metals by ICP/MS			_				
<u>Parameter</u> Hardness as CaCO3	<u>Result Qual</u> 46500	<u>LOQ/CL</u> 5000	<u>DL</u> 5000	<u>Units</u> ug/L	<u>DF</u> 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 05/31/19 18:57
Batch Information							
Analytical Batch: MMS10525 Analytical Method: SM21 2340B Analyst: DSH Analytical Date/Time: 05/31/19 18:57 Container ID: 1192543001-C		i i i i i i i i i i i i i i i i i i i	Prep Batch: Prep Method Prep Date/T Prep Initial V Prep Extract	MXX32449 I: E200.2 Ime: 05/31/1 Vt./Vol.: 20 r Vol: 50 mL	9 08:00 nL		

Results of Const Yard Well							
Client Sample ID: Const Yard Well Client Project ID: Const Yard Well Lab Sample ID: 1192543001 Lab Project ID: 1192543	C R M Se Lo	ollection I eceived D latrix: Drin olids (%): ocation:	Date: 05/22/1 Date: 05/23/1 Iking Water	9 10:00 9 08:22)		
Results by Microbiology Laboratory	/		_				
<u>Parameter</u> E. Coli Total Coliform	<u>Result Qual</u> Negative Negative	<u>LOQ/CL</u> 1 1	<u>DL</u> 1 1	<u>Units</u> 100mL 100mL	<u>DF</u> 1 1	<u>Allowable</u> Limits	Date Analyzed 05/23/19 15:23 05/23/19 15:23
Batch Information Analytical Batch: BTF17361 Analytical Method: SM21 9223B Analyst: ACF Analytical Date/Time: 05/23/19 15:23 Container ID: 1192543001-B							

Results of Const Yard Well

Client Sample ID: **Const Yard Well** Client Project ID: **Const Yard Well** Lab Sample ID: 1192543001 Lab Project ID: 1192543 Collection Date: 05/22/19 10:00 Received Date: 05/23/19 08:22 Matrix: Drinking Water Solids (%): Location:

Results by Private Individual Analysis

						Allowable	
Parameter	Result Qual	LOQ/CL	DL	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Aluminum	20.0 U	20.0	6.20	ug/L	1		05/31/19 18:57
Antimony	1.00 U	1.00	0.310	ug/L	1	(<6)	05/31/19 18:57
Arsenic	5.00 U	5.00	1.50	ug/L	1	(<10)	05/31/19 18:57
Barium	3.00 U	3.00	0.940	ug/L	1	(<2000)	05/31/19 18:57
Cadmium	0.500 U	0.500	0.150	ug/L	1	(<5)	05/31/19 18:57
Calcium	9990	500	150	ug/L	1		05/31/19 18:57
Chromium	2.00 U	2.00	0.800	ug/L	1	(<100)	05/31/19 18:57
Copper	2.17	1.00	0.310	ug/L	1	(<1000)	05/31/19 18:57
Iron	428 *	250	78.0	ug/L	1	(<300)	05/31/19 18:57
Lead	0.243	0.200	0.0700	ug/L	1	(<15)	05/31/19 18:57
Magnesium	5230	50.0	15.0	ug/L	1		05/31/19 18:57
Manganese	329 *	1.00	0.350	ug/L	1	(<50)	05/31/19 18:57
Nickel	2.00 U	2.00	0.620	ug/L	1	(<100)	05/31/19 18:57
Potassium	2570	500	150	ug/L	1		05/31/19 18:57
Selenium	5.00 U	5.00	1.50	ug/L	1	(<50)	05/31/19 18:57
Silver	1.00 U	1.00	0.310	ug/L	1	(<100)	05/31/19 18:57
Sodium	5240	500	150	ug/L	1		05/31/19 18:57
Thallium	1.00 U	1.00	0.310	ug/L	1	(<2)	05/31/19 18:57
Zinc	10.0 U	10.0	3.10	ug/L	1	(<5000)	05/31/19 18:57

Batch Information

Analytical Batch: MMS10525 Analytical Method: EP200.8 Analyst: DSH Analytical Date/Time: 05/31/19 18:57 Container ID: 1192543001-C Prep Batch: MXX32449 Prep Method: E200.2 Prep Date/Time: 05/31/19 08:00 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

						Allowable	
<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	Limits	Date Analyzed
Chloride	3590 *	200	50.0	ug/L	1	(<250)	06/04/19 18:53
Fluoride	200 U	200	50.0	ug/L	1	(<2)	06/04/19 18:53
Sulfate	5180 *	200	50.0	ug/L	1	(<250)	06/04/19 18:53

Print Date: 06/07/2019 11:22:18AM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of Const Yard Well							
Client Sample ID: Const Yard Well Client Project ID: Const Yard Well Lab Sample ID: 1192543001 Lab Project ID: 1192543		Ca Ra M Sa La	ollection Da eceived Da atrix: Drink blids (%): pocation:	ate: 05/22/ [,] ate: 05/23/1 ing Water	19 10:0 9 08:2:	0 2	
Results by Private Individual Analysis			_				
Batch Information Analytical Batch: WIC5918 Analytical Method: EPA 300.0 Analyst: DMM Analytical Date/Time: 06/04/19 18:53 Container ID: 1192543001-A		F F F F	Prep Batch: Prep Method Prep Date/Ti Prep Initial W Prep Extract	WXX12851 I: METHOD me: 06/04/1 Vt./Vol.: 10 n Vol: 10 mL	9 10:45 nL		
<u>Parameter</u> Alkalinity CO3 Alkalinity HCO3 Alkalinity OH Alkalinity	<u>Result Qual</u> 50500 10000 U 50500 10000 U	LOQ/CL 10000 10000 10000 10000	<u>DL</u> 2500 2500 2500 2500	<u>Units</u> ug/L ug/L ug/L ug/L	<u>DF</u> 1 1 1	<u>Allowable</u> <u>Limits</u>	Date Analyzed 05/24/19 11:14 05/24/19 11:14 05/24/19 11:14 05/24/19 11:14
Batch Information Analytical Batch: WTI5193 Analytical Method: SM21 2320B Analyst: EWW Analytical Date/Time: 05/24/19 11:14 Container ID: 1192543001-A							
Parameter Conductivity	<u>Result Qual</u> 121	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.477	<u>Units</u> umhos/c	<u>DF</u> m 1	<u>Allowable</u> Limits	Date Analyzed 05/24/19 11:14
Batch Information Analytical Batch: WTI5192 Analytical Method: SM21 2510B Analyst: EWW Analytical Date/Time: 05/24/19 11:14 Container ID: 1192543001-A							
<u>Parameter</u> pH	<u>Result Qual</u> 7.8	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.100	<u>Units</u> pH units	<u>DF</u> 1	<u>Allowable Limits</u> (6.5-8.5)	<u>Date Analyzed</u> 05/24/19 11:14

Print Date: 06/07/2019 11:22:18AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of Const Yard Well

Client Sample ID: **Const Yard Well** Client Project ID: **Const Yard Well** Lab Sample ID: 1192543001 Lab Project ID: 1192543 Collection Date: 05/22/19 10:00 Received Date: 05/23/19 08:22 Matrix: Drinking Water Solids (%): Location:

Results by Private Individual Analysis

Batch Information

Analytical Batch: WTI5191 Analytical Method: SM21 4500-H B Analyst: EWW Analytical Date/Time: 05/24/19 11:14 Container ID: 1192543001-A

Results of Const Yard Well							
Client Sample ID: Const Yard Well Client Project ID: Const Yard Well Lab Sample ID: 1192543001 Lab Project ID: 1192543			ollection E eceived D latrix: Drin olids (%): ocation:	Date: 05/22/ ate: 05/23/ [,] king Water	19 10:0 19 08:2	00 2	
Results by Waters Department			_				
<u>Parameter</u> Total Nitrate/Nitrite-N	<u>Result Qual</u> 200 U	<u>LOQ/CL</u> 200	<u>DL</u> 50.0	<u>Units</u> ug/L	<u>DF</u> 2	<u>Allowable</u> <u>Limits</u> (<10)	Date Analyzed 05/24/19 13:45
Batch Information Analytical Batch: WFI2818 Analytical Method: SM21 4500NO3-F Analyst: EWW Analytical Date/Time: 05/24/19 13:45 Container ID: 1192543001-D							

lank ID: MB for HBN 1 lank Lab ID: 1509094	794135 [BTF/17361]	Matrix	k: Water (Sur	face, Eff., Ground)	
C for Samples: 192543001					
Results by SM21 9223E	3				
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
E. Coli	Negative	1	1	100mL	
otal Coliform	Negative	1	1	100mL	
Analytical Batch: BTF1 Analytical Method: SM Instrument:	17361 21 9223B				

Method Blank

Blank ID: MB for HBN 1794365 [MXX/32449] Blank Lab ID: 1510152

QC for Samples: 1192543001

Results by EP200.8

Parameter	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Aluminum	10.0U	20.0	6.20	ug/L
Antimony	0.500U	1.00	0.310	ug/L
Arsenic	2.50U	5.00	1.50	ug/L
Barium	1.50U	3.00	0.940	ug/L
Cadmium	0.250U	0.500	0.150	ug/L
Calcium	250U	500	150	ug/L
Chromium	1.00U	2.00	0.800	ug/L
Copper	0.500U	1.00	0.310	ug/L
Iron	125U	250	78.0	ug/L
Lead	0.0833J	0.200	0.0700	ug/L
Magnesium	25.0U	50.0	15.0	ug/L
Manganese	0.500U	1.00	0.350	ug/L
Nickel	1.00U	2.00	0.620	ug/L
Potassium	250U	500	150	ug/L
Selenium	2.50U	5.00	1.50	ug/L
Silver	0.500U	1.00	0.310	ug/L
Sodium	250U	500	150	ug/L
Thallium	0.500U	1.00	0.310	ug/L
Zinc	5.00U	10.0	3.10	ug/L

Batch Information

Analytical Batch: MMS10525 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5 Analyst: DSH Analytical Date/Time: 5/31/2019 6:48:54PM Prep Batch: MXX32449 Prep Method: E200.2 Prep Date/Time: 5/31/2019 8:00:47AM Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 06/07/2019 11:22:22AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix: Water (Surface, Eff., Ground)

Blank Spike Summary

Blank Spike ID: LCS for HBN 1192543 [MXX32449] Blank Spike Lab ID: 1510153 Date Analyzed: 05/31/2019 18:51

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1192543001

Results by EP200.8

		Blank Spike	e (ug/L)	
Parameter	Spike	Result	<u>Rec (%)</u>	
Aluminum	1000	1070	107	
Antimony	1000	1050	105	
Arsenic	1000	1000	100	
Barium	1000	991	99	
Cadmium	100	102	102	
Calcium	10000	10200	102	
Chromium	400	406	101	
Copper	1000	1050	105	
Iron	5000	5050	101	
Lead	1000	1070	107	
Magnesium	10000	10800	108	
Manganese	500	531	106	
Nickel	1000	1040	104	
Potassium	10000	10200	102	
Selenium	1000	1040	104	
Silver	100	97.7	98	
Sodium	10000	10600	106	
Thallium	10	10.2	102	
Zinc	1000	1090	109	

Batch Information

Analytical Batch: MMS10525 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5 Analyst: DSH Prep Batch: MXX32449 Prep Method: E200.2 Prep Date/Time: 05/31/2019 08:00 Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 06/07/2019 11:22:24AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Matrix Spike Summary

Original Sample ID: 1510155 MS Sample ID: 1510156 MS MSD Sample ID: Analysis Date: 05/31/2019 18:57 Analysis Date: 05/31/2019 19:00 Analysis Date: Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1192543001

Results by EP200.8

		Mat	rix Spike (u	g/L)	Spike	Duplicate	(ug/L)			
<u>Parameter</u>	Sample	Spike	Result	<u>Rec (%)</u>	Spike	Result	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	RPD CL
Aluminum	6.63J	1000	1030	102				70-130		
Antimony	0.500U	1000	1070	107				70-130		
Arsenic	2.50U	1000	1000	100				70-130		
Barium	2.41J	1000	992	99				70-130		
Cadmium	0.250U	100	101	101				70-130		
Calcium	9990	10000	19500	95				70-130		
Chromium	1.00U	400	393	98				70-130		
Copper	2.17	1000	1060	105				70-130		
Iron	428	5000	5440	100				70-130		
Lead	0.243	1000	1060	106				70-130		
Magnesium	5230	10000	15700	105				70-130		
Manganese	329	500	851	104				70-130		
Nickel	0.703J	1000	1060	106				70-130		
Potassium	2570	10000	12300	97				70-130		
Selenium	2.50U	1000	1020	102				70-130		
Silver	0.500U	100	96.9	97				70-130		
Sodium	5240	10000	15400	102				70-130		
Thallium	0.500U	10.0	10.1	101				70-130		
Zinc	8.10J	1000	1070	106				70-130		

Batch Information

Analytical Batch: MMS10525 Analytical Method: EP200.8 Instrument: Perkin Elmer NexIon P5 Analyst: DSH Analytical Date/Time: 5/31/2019 7:00:50PM Prep Batch: MXX32449 Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 5/31/2019 8:00:47AM Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 06/07/2019 11:22:25AM

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Method Blank						
Blank ID: MB for HBN 179 Blank Lab ID: 1509260	Blank ID: MB for HBN 1794172 [STS/6283] Blank Lab ID: 1509260		Matrix	: Water (Surfa	ace, Eff., Ground)	
QC for Samples: 1192543001						
Results by SM21 2540C		_				
Parameter Total Dissolved Solids	<u>Results</u> 7000J		<u>LOQ/CL</u> 10000	<u>DL</u> 3100	<u>Units</u> ug/L	
Batch Information						
Analytical Batch: STS628 Analytical Method: SM21 Instrument: Analyst: EWW Analytical Date/Time: 5/2	33 2540C 24/2019 3:53:46PM					

Duralizata Comula Currana					
Original Sample ID: 119252800 Duplicate Sample ID: 1509263 QC for Samples: 1192543001	01	A N	Analysis Date: 05/ Matrix: Drinking W	24/2019 15:53 ater	
Results by SM21 2540C					
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
Total Dissolved Solids	163000	171000	ug/L	4.80	(< 5)
Batch Information					
Analytical Batch: STS6283 Analytical Method: SM21 2540C Instrument: Analyst: EWW	;				

Blank Spike Summary									
Blank Spike ID: LCS for HE Blank Spike Lab ID: 15092 Date Analyzed: 05/24/201	3N 1192543 [S 61 I9 15:53	STS6283]		Spik [ST: Spik Mati	e Duplica 6283] e Duplica ix: Water	te ID: LCS te Lab ID: ⁻ (Surface,	D for HBN 1 1509262 Eff., Ground)	
QC for Samples: 119254	43001								
Results by SM21 2540C									
	В	lank Spike	(ug/L)	S	pike Duplic	cate (ug/L)			
Parameter Total Dissolved Solids	<u>Spike</u> 333000	<u>Result</u> 314000	<u>Rec (%)</u> 94	<u>Spike</u> 333000	<u>Result</u> 325000	<u>Rec (%)</u> 98	<u>CL</u> (75-125)	<u>RPD (%)</u> 3.40	<u>RPD CL</u> (< 5)
Batch Information									
Analytical Batch: STS6283 Analytical Method: SM21 2 Instrument: Analyst: EWW	540C								

lethod Blank					
Blank ID: MB for HBN 179 Blank Lab ID: 1509577	94221 (WFI/2818)	Matrix	x: Water (Surfa	ace, Eff., Ground)	
QC for Samples:					
Results by SM21 4500NO3-F		J			
<u>'arameter</u> litrate-N	<u>Results</u> 100U	<u>LOQ/CL</u> 200	<u>DL</u> 50.0	<u>Units</u> ua/L	
litrite-N	100U	200	50.0	ug/L	
otal Nitrate/Nitrite-N	54.6J	200	50.0	ug/L	
tch Information					
Analytical Batch: WFI28	18 1.4500NO3 E				
Instrument: Astoria segn	nented flow				
Analyst: EWW					
Analytical Date/Time: 5/2	24/2019 12:18:27PM				

Method Blank						
Blank ID: MB for HBN 179 Blank Lab ID: 1509579	Blank ID: MB for HBN 1794221 (WFI/2818) Blank Lab ID: 1509579		Matrix	: Water (Surf	ace, Eff., Ground)	
QC for Samples: 1192543001						
Results by SM21 4500NO	3-F					
Parameter	<u>Results</u>		LOQ/CL	<u>DL</u>	<u>Units</u>	
Nitrate-N	100U		200	50.0	ug/L	
Nitrite-N	100U		200	50.0	ug/L	
Total Nitrate/Nitrite-N	55.4J		200	50.0	ug/L	
Batch Information						
Analytical Batch: WFI281 Analytical Method: SM21 Instrument: Astoria segm Analyst: EWW	4500NO3-F nented flow					
Analytical Date/Time: 5/2	24/2019 1:03:57 PW					

Method Blank					
Blank ID: MB for HBN 179 Blank Lab ID: 1509581	94221 (WFI/2818)	Matrix	c: Water (Surfa	ace, Eff., Ground)	
QC for Samples: 1192543001					
Results by SM21 4500NO	3-F)(
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>	
Nitrate-N Nitrite-N	100U 100U	200	50.0 50.0	ug/L ug/l	
Total Nitrate/Nitrite-N	58.8J	200	50.0	ug/L	
Batch Information					
Analytical Batch: WFI28 ⁻ Analytical Method: SM21 Instrument: Astoria segn Analyst: EWW Analytical Date/Time: 5/2	18 4500NO3-F hented flow 24/2019 2:03:27PM				

Blank Spike ID: LCS for H Blank Spike Lab ID: 1509 Date Analyzed: 05/24/20	HBN 1192543 9576 019 12:16	WFI2818]		Matrix: Water (Surface, Eff., Ground)
QC for Samples:				
Results by SM21 4500NC)3-F			
		Blank Spike	e (ug/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Nitrate-N	2500	2600	104	(70-130)
Nitrite-N	2500	2620	105	(90-110)
Total Nitrate/Nitrite-N	5000	5230	105	(90-110)
Analytical Batch: WFI281 Analytical Method: SM21	8 4500NO3-F nented flow			

Blank Spike ID: LCS for F Blank Spike Lab ID: 1509 Date Analyzed: 05/24/20	IBN 1192543 9578 019 13:02	[WFI2818]		Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1192	543001		_	
Results by SM21 4500NC)3-F			
Paramotor	Spiko	Blank Spike	e (ug/L) Boc (%)	CI
<u>raiameter</u> Nitrate-N	2500	<u>Result</u> 2460	<u>Rec (%)</u> 99	<u>u</u> (70-130)
Nitrite-N	2500	2420	97	(90-110)
Total Nitrate/Nitrite-N	5000	4880	98	(90-110)
Batch Information				
Analytical Batch: WFI2818 Analytical Method: SM21 Instrument: Astoria segm Analyst: EWW	3 4500NO3-F lented flow			

Blank Spike ID: 1509 Blank Spike Lab ID: 1509 Date Analyzed: 05/24/20	580 019 14:01	[VVF12010]		Matrix: Water (Surface, Eff., Ground)
QC for Samples: 1192	543001			
Results by SM21 4500NO	3-F			
		Blank Spike	e (ug/L)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
litrate-N	2500	2680	107	(70-130)
litrite-N	2500	2580	103	(90-110)
otal Nitrate/Nitrite-N	5000	5260	105	(90-110)
Batch Information				
Analytical Batch: WFI2818 Analytical Method: SM214 Instrument: Astoria segm Analyst: EWW	4500NO3-F ented flow			

Matrix Spike Summary										
Original Sample ID: 119245 MS Sample ID: 1509547 M MSD Sample ID: 1509548	0001 IS MSD		_		Analysis Analysis Analysis Matrix: [Date: 09 Date: 09 Date: 09 Date: 09	5/24/2019 5/24/2019 5/24/2019 Water	13:52 13:54 13:56		
QC for Samples: 11925430	01									
	_									
Results by SM21 4500NO3-	·F	Mat	rix Snike (iua/L)	Spike	Duplicati	e (ua/L)			
Parameter	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Total Nitrate/Nitrite-N	8720	20000	32100	117 *	20000	31400	114 *	90-110	2.10	(< 25)
Batch Information Analytical Batch: WFI2818 Analytical Method: SM21 44 Instrument: Astoria segmen Analyst: EWW Analytical Date/Time: 5/24/	500NO3-F ited flow 2019 1:54:42F	ΡM								

Matrix Spike Summary										
Original Sample ID: 1192511001 MS Sample ID: 1509549 MS MSD Sample ID: 1509550 MSD					Analysis Analysis Analysis Matrix: [Date: 09 Date: 09 Date: 09 Drinking V	5/24/2019 5/24/2019 5/24/2019 Water	12:23 12:25 12:27		
QC for Samples: 11925	43001					-				
	-									
Results by SM21 4500N	03-F	Mat	triv Snike ((ua/L)	Snike	a Dunlicat	e (ua/L)			
Parameter	Sample	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Total Nitrate/Nitrite-N	13800	25000	38600	99	25000	40500	107	<u>90</u> -110	5.00	(< 25)
Batch Information										
Analytical Batch: WFI28 Analytical Method: SM2 Instrument: Astoria seg Analyst: EWW Analytical Date/Time: 5	318 21 4500NO3-F mented flow /24/2019 12:25:27	'PM								

Duplicate Sample Sur	nmary							
Original Sample ID: 1192528001 Duplicate Sample ID: 1509498		_	Analysis Date: 05/24/2019 10:55 Matrix: Drinking Water					
QC for Samples:								
1192543001								
Results by SM21 4500	-Н В							
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL			
pH	7.0	7.00	pH units	0.00	(< 5)			
Potch Information								
Analytical Batch: WTI5 Analytical Method: SM Instrument: Titration Analyst: EWW	191 21 4500-Н В							

- Duplicate Sample Sum	mary				
Original Sample ID: 1192579002 Duplicate Sample ID: 1509499			Analysis Date: 0 Matrix: Water (S	5/24/2019 12:09 urface, Eff., Grour	nd)
QC for Samples:					
1192543001					
Results by SM21 4500-H	1 B				
NAME	Original	Duplicate	<u>Units</u>	<u>RPD (%)</u>	RPD CL
pН	7.8	7.90	pH units	1.30	(< 5)
Patch Information					
Analytical Batch: WTI519 Analytical Method: SM2 Instrument: Titration Analyst: EWW	91 1 4500-H B				

SGS	

Blank Spike Summary			_	
Blank Spike ID: LCS for HB Blank Spike Lab ID: 150949 Date Analyzed: 05/24/2019	N 1192543 [5 9 09:18	WTI5191]		Matrix: Water (Surface Eff. Ground)
QC for Samples: 119254	3001			
Results by SM21 4500-H B				
	BI	ank Spike (pH units)	
Parameter	Spike	Result	<u>Rec (%)</u>	<u>CL</u>
pН	6.98	7.01	100	(99-101)
Batch Information				
Analytical Batch: WTI5191 Analytical Method: SM21 450 Instrument: Titration Analyst: EWW	00-H B			
Print Date: 06/07/2019 11:22:39AM				

Method Blank								
Blank ID: MB for HBN Blank Lab ID: 150950	Blank ID: MB for HBN 1794212 [WTI/5192] Blank Lab ID: 1509502		Matrix: Water (Surface, Eff., Ground)					
QC for Samples: 1192543001								
		_						
Results by SM21 251	0B							
Parameter Conductivity	<u>Results</u> 1.90*	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.477	<u>Units</u> umhos/cm				
Batch Information								
Analytical Batch: W Analytical Method: S Instrument: Titration Analyst: EWW Analytical Date/Time	TI5192 SM21 2510B :: 5/24/2019 9:43:24AM							

Duplicate Sample Summary									
Original Sample ID: 1192528001 Duplicate Sample ID: 1509503			Analysis Date: 05/24/2019 10:55 Matrix: Drinking Water						
QC for Samples:									
1192543001									
Results by SM21 2510B									
	Original	Duplicato	Unite						
<u>NAME</u>			<u>onits</u>	<u>KFD (78)</u>	<u>KFD CL</u>				
Conductivity	234	234	umhos/cm	0.00	(< 20)				
Batch Information									
Analytical Batch: WTI5192 Analytical Method: SM21 2510 Instrument: Titration Analyst: EWW)B								
Print Date: 06/07/2010 11·22·//24M									

SGS	

Blank Spike Summary				
Blank Spike ID: LCS for HBN 1192543 [WTI5192] Blank Spike Lab ID: 1509501 Date Analyzed: 05/24/2019 09:12				Matrine (Mater (Quaters Eff. Queund))
QC for Samples: 119254300)1			Matrix: Water (Surface, Eff., Ground)
Results by SM21 2510B				
	Blan	k Spike (ui	mhos/cm)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	<u>CL</u>
Conductivity	10.1	10.9	108	(90-110)
Batch Information				
Analytical Batch: WTI5192 Analytical Method: SM21 2510E Instrument: Titration Analyst: EWW	3			
Print Date: 06/07/2019 11:22:43AM				

+

SGS	

_	Method Blank					
	Blank ID: MB for HBN 1794213 [WTI/5193] Blank Lab ID: 1509504		Ma	trix: Water (Surfa	ace, Eff., Ground)	
	QC for Samples: 1192543001					
	Results by SM21 2320	B				
	<u>Parameter</u> Alkalinity	<u>Results</u> 3150J	<u>LOQ/CL</u> 10000	<u>DL</u> 2500	<u>Units</u> ug/L	
-[Batch Information					
	Analytical Batch: WT Analytical Method: S Instrument: Titration Analyst: EWW Analytical Date/Time:	15193 M21 2320B 5/24/2019 9:43:24AM				

Original Sample ID: 119252	-						
Duplicate Sample ID. 1509	Original Sample ID: 1192528001 Duplicate Sample ID: 1509506		Analysis Date: 05/24/2019 10:55 Matrix: Drinking Water				
QC for Samples:							
1192543001							
Results by SM21 2320B							
	Original	Duplicate	Linite				
NAME					<u>(+ 05)</u>		
Alkalinity	91200	91230	ug/L	0.08	(< 25)		
Batch Information							
Analytical Batch: WTI5193 Analytical Method: SM21 23 Instrument: Titration Analyst: EWW	320B						

Duplicate Sample Summ	arv					
Original Sample ID: 1192579002 Duplicate Sample ID: 1509507 QC for Samples:		Analysis Date: 05/24/2019 12:09 Matrix: Water (Surface, Eff., Ground)				
				, , ,		
1192543001						
1102010001						
Results by SM21 2320B						
NAME	Original	Duplicate	Units	RPD (%)	RPD CL	
Alkalinity	42100	42150	ug/L	0.10	(< 25)	
Patch Information					, <i>,</i>	
Analytical Batch: WTI5193 Analytical Method: SM21 Instrument: Titration Analyst: EWW	2320B					
Print Date: 06/07/2010 11:22:45	M					
1 1111 Date. 00/07/2019 11.22.43A						

SGS North America Inc.

SGS	

Blank Spike Summary			
Blank Spike ID: LCS for HBN 1192543 [WTI5193] Blank Spike Lab ID: 1509505 Date Analyzed: 05/24/2019 09:52			Matrix: Water (Surface Eff. Ground)
QC for Samples: 119254300	11		
Results by SM21 2320B		_	
	Blank Spike	(ug/L)	
<u>Parameter</u> Alkalinity	<u>Spike</u> <u>Result</u> 250000 238000	<u>Rec (%)</u> 95	<u>CL</u> (85-115)
Batch Information			
Analytical Batch: WTI5193 Analytical Method: SM21 2320B Instrument: Titration Analyst: EWW	3		
Print Date: 06/07/2019 11:22:47AM			

+
SGS

Method Blank						
Blank ID: MB for HBN 1 Blank Lab ID: 1511264	794605 [WXX/12851]	Matrix: Water (Surface, Eff., Ground)				
QC for Samples: 1192543001						
Results by EPA 300.0						
Parameter	Results	LOQ/CL	<u>DL</u>	<u>Units</u>		
Chloride	100U	200	50.0	ug/L		
Sulfate	100U	200	50.0 50.0	ug/L		
atch Information						
Analytical Batch: WIC	5918	Prep Ba	tch: WXX1285	1		
Analytical Method: EP	A 300.0	Prep Me	ethod: METHO)		
Analyst: DMM	nin compact ic liex	Prep Da Prep Ini	tial Wt /Vol · 10	ml		
/	6/4/2010 2·22·42DM	Pren Ev	tract Vol: 10 m			

Print Date: 06/07/2019 11:22:48AM

1				
Blank Spike Summary				
Blank Spike ID: LCS for HB Blank Spike Lab ID: 151126 Date Analyzed: 06/04/201	8N 1192543 [V 65 9 14:51	VXX1285	1]	Matrix: Water (Surface, Eff., Ground)
QC for Samples: 119254	3001			
Results by EPA 300.0				
	В	lank Spike	e (ug/L)	
Parameter_	<u>Spike</u>	Result	Rec (%)	CL
Chloride	5000	4980	100	(90-110)
Fluoride	5000	5020	100	(90-110)
Sulfate	5000	4940	99	(90-110)
Batch Information				
Analytical Batch: WIC5918 Analytical Method: EPA 300 Instrument: 930 Metrohm co Analyst: DMM	0.0 ompact IC flex			Prep Batch: WXX12851 Prep Method: METHOD Prep Date/Time: 06/04/2019 10:45 Spike Init Wt./Vol.: 5000 ug/L Extract Vol: 10 mL Dupe Init Wt./Vol.: Extract Vol:

Print Date: 06/07/2019 11:22:49AM

Matrix Spike Summary

Original Sample ID: 1510901 MS Sample ID: 1511269 MS MSD Sample ID: 1511270 MSD Analysis Date: 06/04/2019 15:48 Analysis Date: 06/04/2019 15:59 Analysis Date: 06/04/2019 16:20 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1192543001

Results by EPA 300.0 Matrix Spike (ug/L) Spike Duplicate (ug/L) Parameter Sample Spike Result Rec (%) <u>Spike</u> Result Rec (%) RPD (%) RPD CL CL Chloride 100U 5000 5540 111 5000 5630 113 90-110 1.50 (< 15) 100U Fluoride 5000 4580 92 5000 4490 90 * 90-110 2.10 (< 15) Sulfate 100U 5000 4650 93 5000 4720 1.50 94 90-110 (< 15)

Batch Information

Analytical Batch: WIC5918 Analytical Method: EPA 300.0 Instrument: 930 Metrohm compact IC flex Analyst: DMM Analytical Date/Time: 6/4/2019 3:59:54PM Prep Batch: WXX12851 Prep Method: EPA 300.0 Extraction Waters/Liquids Prep Date/Time: 6/4/2019 10:45:00AM Prep Initial Wt./Vol.: 10.00mL Prep Extract Vol: 10.00mL

Print Date: 06/07/2019 11:22:50AM

Locations Nationwide Alaska Maryland New Jersey New York North Carolina Florida

				· · · ·			-			·	-	www.us.sgs.co	om
	CLIENT: Johnson D	r'illin	9 (20				Instructi Omissi	ons: Sections may	ions delay	1 - 5 must t the onset o	be filled out. f analysis.		
	CONTACT: PI Steve W 7	HONE #:	907	250 505	🖌 Se	ction 3		Preservative	9				Page of
	PROJECT NAME: Const. Yard Welse REPORTS TO: Shannon + Wilsopi INVOIGE TO:	ROJECT/ ア RMIT#: MAIL: <i>人下</i> , rofile #: UOTE #: <u>人</u> 」	f@ 5/	anui).Com	# 0 N - T A			Analysis		Info Requ incorrect ir may be	ired for ADE nfo may resu e found on ye Sum	C Submitta It in a dela our ADEC imary.	al - Missing or y. Information Monitoring
	Shankon Y Wilson 2315 Hill Ad, Fbks RESERVED for lab use Sample Location	<i>¶ d[#] 7 ⊙ 9</i> Date of Co		Time of Collection	I N E R S	Comp Grab	AIN			PWSID#	FAC ID #	Sa	mple Pt. ID
	(DA-D		<u>ا</u>										
tion 2	v 5												
С С С													
		· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·
_	Relinquished By: (1)	Date	Time	Received By	/ /:			Section	ר 4 1 4			Data Deliver	able Requirements:
	Relinquished By: (2)	Date	Time	Received By	/:			Coo	oler ID: ed Turn	around Time a	nd/or Special Inst	ructions:	
action 5	Relinguished By: (3)	Date	Time	Received By	·						-		
Jone 1	Relinguished By: (4)	Date ທີ່	Time	Received Fo	r Labor	atory By:		Tem	o Blank	°C: <u> . </u>	Þ .s1	Chain of Cu	stody Seal: (Circle)
1 of 44	5/22/19 0822 P		2 74	m	- NSIN	/		or Ambient [] INTA					

http://www.sgs.com/terms-and-conditions

SGS	

		A DECEMBER OF THE PARTY OF		A CONTRACTOR OF	-		
*Water System Name:					In	fo Required for ADEC	
Contact: Jteve		Sub	mittal- Missing or incorrect				
Email: Jda @	qui, n	et,	<u> </u>			nfo may result in a delay.	
Invoice to: Shann	ont 4	Urlson .	Attn	Kristen	*PWSIC)#:	
Address 1907 4	58 3	146 [ax:	r	*Facility	y ID:	
Address 2,535	H11/ KO	Ctotor A 1/	J		*Sampl	e Point:	
City. Foir banks		State: AK		Zip: 99 7 8 9	*Residu	Jal CI (mg/L)	
					ł	1192543	
Additional Reports to: *Sample Location: Const Yourd Well Niw s/28/17						حل()	
the former of					┡		
*Date/Time or	05	22	2019	10,00 AM/PM		1	
	ММ	DD	YYYY	HH:MM	Ar	alvsis Requested	
					1_	SM0223R-Total Coli P/A	
	<u> </u>					(Default)	
Sample Collector:	St	2WU	1h	ST		SM9223-Total Coli Quantitray MPN	
jdc@gci.n	et	Signature	907 :	250 5051		SM9215-Heterotrophic Plate Count	
Sample Type:	Drink	ing Water		a.			
	□ Saltw	/ater		⁽ 8 ,			
	1		<u></u>	T	وسندي سبعك		
Received by:	La	Non	J	Date: 5/23/19		Time: 0822	
	Signature Initials MM/DD/Y				,	HH:MM	
Temperature: □Amb	Temperature: Ambient or°C Delivery: Client or Other (specify):						
*Please note if the a	*Please note if the above information is missing it may result in late reporting to the state for compliance*						
—		•, <u>S</u> i	ample C	ondition:		, .	
□ Sample over 30 no	ours old, re	esults may h	oe unrelia	ble. <i>Note: Source</i> w	vater H	IPC has 8 hour holding tin	
	eceived tro	ozen or with	visible ic	e, and was rejected.		·	
□ The sample was n	ot receive	d in a labora	atory issu	e, pre-sterilized con	tainer,	and was rejected.	
This section	used for	immodiate					
Apolycie Regan:	<u>useu ioi</u>	Immediate) NOUIICA		4010	RY results only:	
Analysis Degan.		<u> </u>		□ SM9223B Presence	∍/Absen	ice	
Analyst:				□ SM9223 QuantTray	i		
Total Coliform:							
Result: E. coli / Fecal Coliform:							
Result:	E. coli / F	ecal Colifor	·m:			· ·	
Result:	E. coli / F Other Ba	ecal Colifor cteria:	rm:	<u></u>			
Result:	E. coli / F Other Ba	ecal Colifo cteria:	rm: By: Fax:	Phone:		Email:	
Result: Reported to: Reported to:	E. coli / F Other Ba	cteria:	rm: Ву: Fax: Зу: Fax:	Phone:		Email:	
Result: Reported to: Reported to: Analyst:	E. coli / F Other Ba	cteria:	rm: By: Fax: By: Fax:	Phone: Phone:	Emai	Email:Email:Email:Email:Email:Email:Email:Email:Encoli to	
Result: Reported to: Reported to: Analyst: Signature	E. coli / F Other Ba	cteria:	rm: By: Fax: By: Fax:	Phone: Phone: Date/Time	Email Proje	Email:Email:Email:Email:Email:Email:Encoli to set Manager, QC Notices, Micro,	

Alert	Expeditors Inc.	#	393414
Citywide 8421 Flamingo Dri	e Delivery • 440-3351 ve • Anchorage, Alaska	99502	
Date 5 3	<u>-11</u>	A	
From	Jahnson	<u>~ 2/2 (1) (</u>	<u>^;</u>
To	Labs	Ane	
Collect	Prepay 🗖 Account 🗇	Advance Ch	arges 🗇
Job #	PO#Ace 3	17127	4
SAV	n n/ms		2
· .			
Comme			
Shipped Signature			
- Recent	and the state of t		
		Total Charge	
Received By:	den d	22	
1			

Appendix B Field Forms

CONTENTS

- Field Activities Daily Logs
- Private Well Inventory Survey Forms
- Residential Well Sampling Logs

Water supply well field notes contain personal information. This content has been removed for confidentiality.

Appendix C Public Information

CONTENTS

- DOT&PF King Salmon Private Well Sampling Notice
- March 2019 Water Supply Well Search Packet
 - DOT&PF Letter to Property Owner or Occupant
 - DOT&PF PFAS Fact Sheet (March 2019)
 - Shannon & Wilson Private Well Inventory Survey Form
 - o Shannon & Wilson PFAS Well Search and Sample Locations Map
 - Agency for Toxic Substances and Disease Registry PFAS Frequently Asked Questions
- Shannon & Wilson Results Notification Letter Template
- DOT&PF PFAS Fact Sheet (October 2019)

Department of Transportation and Public Facilities

STATEWIDE AVIATION

P.O. Box 196900, 99519-6900 4111 Aviation Avenue, 99502 Anchorage, AK Main: 907.269.0730 Fax: 907.269.0489 dot.state.ak.us

King Salmon Private Well Sampling Notice

In January 2019, the Department of Transportation & Public Facilities (DOT&PF) was notified of concentrations of Per- and Polyfluoroalkyl Substances (PFAS) in groundwater on King Salmon Airport property.

Firefighters at the King Salmon Airport used aqueous film forming foam (AFFF), a standard firefighting agent that contains PFAS, to extinguish hydrocarbon fires during training exercises and emergency events.

Of the nine samples collected by the Alaska Department of Environmental Conservation (ADEC), one well located on airport property tested above the action level of 70 parts per trillion (ppt) for the sum of five PFAS compounds. The other eight wells had concentrations well below the action level of 70 ppt for the sum of five PFAS compounds.

DOT&PF has contracted Shannon & Wilson, Inc. to finish the preliminary investigation, which includes an in-depth well search and sampling event.

Well Search & Sampling Information

Friday, March 14, 2019 to Monday, March 19, 2019

- Shannon & Wilson, Inc. will be conducting further testing in the designated sampling area shown in the map above.
- Three samplers will be conducting site visits in King Salmon to identify and sample private wells.
- Residents located in the sampling area with an active well at their home or business should contact Shannon & Wilson staff at 907-371-9022 to schedule a sampling appointment.

Please visit <u>http://www.dot.state.ak.us/airportwater/kingsalmon/</u> or email <u>airportwater@alaska.gov</u> if you have questions.

"Keep Alaska Moving through service and infrastructure."

Department of Transportation and Public Facilities

STATEWIDE AVIATION

P.O. Box 196900, 99519-6900 4111 Aviation Avenue, 99502 Anchorage, AK Main: 907.269.0730 Fax: 907.269.0489 dot.state.ak.us

March 11, 2019

Dear Property Owner or Occupant:

The Department of Transportation and Public Facilities (DOT&PF) was recently alerted to concentrations of per- and polyfluoroalkyl substances (PFAS) in groundwater near the King Salmon Airport. Firefighters at the King Salmon Airport used aqueous film forming foam (AFFF), a standard firefighting agent that contains PFAS, to extinguish hydrocarbon fires during training exercises and emergency events.

Of the nine wells sampled, one well located on airport property exceeded the Department of Environmental Conservation (DEC) action level of 70 parts per trillion (ppt) for the sum of five PFAS compounds. The other wells sampled on or near airport property had concentrations considerably lower than the action level.

The DOT&PF has contracted with environmental consulting firm Shannon & Wilson, Inc. to continue the preliminary investigation. Shannon & Wilson, Inc. will identify and sample private water wells near the airport to determine if these substances are present and above recommended levels. PFAS are emerging contaminants, research into the health effects of exposure to PFAS is ongoing.

Results of the water samples will be shared with property residents. If your well is found to have PFAS above the DEC action level, DOT&PF will assist with access to clean drinking water.

If you have any questions, please contact me, or see the list on the reverse side of this letter to identify the most appropriate person or agency for your inquiry. We appreciate your patience as we work through this process.

Sincerely,

Sammy Loud PFAS Project Manager, DOT&PF Statewide Aviation

STATEWIDE AVIATION

P.O. Box 196900, 99519-6900 4111 Aviation Avenue, 99502 Anchorage, AK Main: 907.269.0730 Fax: 907.269.0489 dot.state.ak.us

PFAS Fact Sheet

March 2019

Per- and polyfluoroalkyl substances (PFAS) are a group of manmade chemicals that have been used for a wide variety of residential, commercial, and industrial uses. PFAS are considered emerging environmental contaminants and the health effects are not well known.

The presumed source of PFAS in groundwater in King Salmon is the use of a fire-fighting foam called aqueous film forming foam (AFFF). King Salmon Airport fire fighters used the foam to extinguish hydrocarbon fires during training exercises and emergency events.

The Dept. of Transportation and Public Facilities has hired Shannon & Wilson to test private wells for six PFAS. Two of the most common PFAS are perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA).

The Dept. of Environmental Conservation action level for drinking water is **70 parts per trillion** for the sum of five similar compounds. Out of caution, alternate water will be provided to those with levels above 65 parts per trillion.

We advise that residents with test results above this level do not use their water for drinking or cooking. If your well is considered affected, you can continue to shower, clean, and do laundry.

Test results are typically available within three to four weeks of sample collection. If your well is found to have PFAS above the state action level, DOT&PF will assist with access to clean drinking water.

PFAS are used in a large number of products ranging from fabric waterproofing compounds, nonstick cookware, stain-resistant carpeting, some food packaging, and firefighting foams. For the sampling area map:

www.dot.alaska.gov/airportwater/kingsalmo n

For questions about well testing:

Shannon & Wilson, Inc. Kristen Freiburger, Project Manager Phone: 907-458-3146 Email: krf@shanwil.com

For regulatory questions:

Dept. of Environmental Conservation Bill O'Connell, Contaminated Sites Program Phone: 907-269-3057 Email: <u>bill.oconnell@alaska.gov</u>

For questions about PFAS and health:

Dept. of Health & Social Services Kristin Bridges, Public Health Scientist Phone: 907-269-8028 Email: <u>kristin.bridges@alaska.gov</u>

To file an insurance claim:

Dept. of Admin., Risk Management Britney Hunter, Risk Assessor Phone: (907) 465-2183 Email: britney.hunter@alaska.gov

For questions about fire training and other inquiries:

Sammy Loud, DOT&PF Statewide Aviation Phone: 907-888-5671 Email: <u>airportwater@alaska.gov</u>

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

Private Well Inventory Survey Form

Date:	Parcel ID#:
Physical Address:	
Name (Owner):	
Name (Occupant):	
Mailing Address (Owner):	
Mailing Address (Occupant):	
Owner Email:	Occupant Email:
Owner Phone: Preferred method of contact (circle): Email Number of people residing at this location: Years at this residence: Full-Time	Occupant Phone: Phone Adults (18 and over) Teenagers (13 to 17) Children (12 and under) Seasonal
 From where do you obtain your drinking water a) Residential (private) well c) Bottled water 	r? b) Community well d) Other
 2) If you have a private well, please answer the feasibility of the property of the p	ollowing questions: ?
 3) If <u>no</u>, is the well usable, unusable, or properly Usable Unusable Abandone If <u>yes</u>, please check all that apply regarding the Drinking Cooking food preparation Other 	abandoned? dMethod e usage of your well water: Vegetable/grain Gardening size of Gardensq.feet/acres _Average watering frequency using well water? (daily, weekly, etc.)
 a) When was the well installed? b) What is the well depth? c) What is the well diameter? d) What is the well type? Dug Drille e) Do you have any treatment on your well (and the second second	Well Driven ed Unknown e.g. water softener)? Please describe.
 4) Sample Permission Does the Shannon & Wilson, Inc. have permiss 	sion to sample your private well?

Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) Frequently Asked Questions

What are PFAS?

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large group of man-made chemicals that have been used in industry and consumer products worldwide since the 1950s.

- PFAS do not occur naturally, but are widespread in the environment.
- PFAS are found in people, wildlife and fish all over the world.
- Some PFAS can stay in people's bodies a long time.
- Some PFAS do not break down easily in the environment.

How can I be exposed to PFAS?

PFAS contamination may be in drinking water, food, indoor dust, some consumer products, and workplaces. Most non worker exposures occur through drinking contaminated water or eating food that contains PFAS.

Although some types of PFAS are no longer used, some products may still contain PFAS:

- Food packaging materials
- Nonstick cookware
- Stain resistant carpet treatments
- Water resistant clothing
- Cleaning products
- Paints, varnishes and sealants
- Firefighting foam
- Some cosmetics

How can I reduce my exposure to PFAS?

PFAS are present at low levels in some food products and in the environment (air, water, soil etc.), so you probably cannot prevent PFAS exposure altogether. However, if you live near known sources of PFAS contamination, you can take steps to reduce your risk of exposure.

- If your drinking water contains PFAS above the EPA Lifetime Health Advisory, consider using an alternative or treated water source for any activity in which you might swallow water:
 - » drinking
 - » food preparation
 - » cooking
 - » brushing teeth, and
 - » preparing infant formula
- Check for fish advisories for water bodies where you fish.
 - » Follow fish advisories that tell people to stop or limit eating fish from waters contaminated with PFAS or other compounds.
 - » Research has shown the benefits of eating fish, so continue to eat fish from safe sources as part of your healthy diet.
- Read consumer product labels and avoid using those with PFAS.

Agency for Toxic Substances and Disease Registry Division of Community Health Investigations

How can PFAS affect people's health?

Some scientific studies suggest that certain PFAS may affect different systems in the body. NCEH/ATSDR is working with various partners to better understand how exposure to PFAS might affect people's health— especially how exposure to PFAS in water and food may be harmful. Although more research is needed, some studies in people have shown that certain PFAS may:

- affect growth, learning, and behavior of infants and older children
- lower a woman's chance of getting pregnant
- interfere with the body's natural hormones
- increase cholesterol levels
- affect the immune system and
- increase the risk of cancer

At this time, scientists are still learning about the health effects of exposures to mixtures of PFAS.

How can I learn more?

You can visit the following websites for more information:

- CDC/ATSDR:
 - » CDC Info: https://www.cdc.gov/cdc-info/, or (800) 232-4636.
 - » www.atsdr.cdc.gov/pfc/index.html
 - » https://www.cdc.gov/exposurereport/index.html
- Environmental Protection Agency (EPA):
 https://www.epa.gov/chemical-research/research-and-polyfluoroalkyl-substances-pfas
- Food and Drug Administration: <u>https://www.fda.gov/food/newsevents/constituentupdates/ucm479465.htm</u>
- National Toxicology Program: <u>https://ntp.niehs.nih.gov/pubhealth/hat/noms/pfoa/index.html</u>

If you have questions about the products you use in your home, please contact the **Consumer Product Safety Commission (CPSC)** at **(800) 638-2772**.

List of Common PFAS and Their Abbreviations:

Abbreviation	Chemical name
PFOS	Perfluorooctane sulfonic acid
PFOA (or C8)	Perfluorooctanoic acid
PFNA	Perfluorononanoic acid
PFDA	Perfluorodecanoic acid
PFOSA (or FOSA)	Perfluorooctane sulfonaminde
MeFOSAA (aka Me-PFOSA-AcOH)	2-(N-Methyl-perfluorooctane sulfonamido) acetic acid
Et-FOSAA (aka Et-PFOSA-AcOH)	2-(N-Ethyl-perfluorooctane sulfonamido) acetic acid
PFHxS	Perfluorohexane sulfonic acid

March <mark>X</mark>, 2019

NAME MAILING ADDRESS King Salmon, AK 99576

RE: RESULTS OF MARCH 2019 PFAS PRIVATE WELL SAMPLING, KING SALMON AIRPORT

Dear Mr. and Mrs. XXXX,

Thank you for participating in our private-well sampling program to evaluate the potential presence of per- and polyfluoroalkyl substances (PFAS) in groundwater near the King Salmon Airport. Shannon & Wilson, Inc. collected a water sample on March X, 2019, from the well at your residence/business. Enclosed are the analytical results for the sample from your residential/commercial water-supply well at PHYSICAL ADDRESS. We have prepared an identical letter for your tenant/s NAME.

The well-water sample was analyzed for six PFAS compounds. Currently, the Alaska Department of Environmental Conservation (ADEC) action level for drinking water is 70 parts per trillion (ppt) for the sum of five compounds: PFOS, PFOA, PFHpA, PFHxS, and PFNA.

Results of the analysis conducted by TestAmerica Laboratories, Inc. indicate that PFOS was not/was detected at X ppt, PFOA was not/was detected at X ppt, and PFHxS was not/was detected at X ppt [list three largest values excluding PFBS /or/ the five PFAS compounds were not detected] in the water sample collected from your well. The sum of the five compounds is less than/greater than the ADEC action level. The portions of the original laboratory report that apply to your well (sample number *XXXXXX* and field-duplicate sample *XXXXXX*) are enclosed for your records.

We sampled over 60 private water-supply wells in King Salmon on behalf of the Alaska Department of Transportation and Public Facilities (DOT&PF). DOT&PF will provide an alternative drinking water source to the occupants of homes and businesses whose well water exceeds the ADEC action level, and who use their water for drinking or cooking. //OR// is

NAME Business March X, 2019 Page 2

offering your residence/business an alternate source of drinking water. Please contact [business name/phone] if you have any questions or concerns regarding bottled water delivery.

Please see the enclosed PFAS fact sheet for a link to the DOT&PF project website, and feel free to contact us if you have questions regarding your results.

Sincerely,

SHANNON & WILSON, INC.

Name Title

Enc: Select Pages of Test America Laboratory Report No. 320-XXXXX King Salmon Airport PFAS Fact Sheet

Department of Transportation and Public Facilities

STATEWIDE AVIATION

P.O. Box 196900, 99519-6900 4111 Aviation Avenue, 99502 Anchorage, AK Main: 907.269.0730 Fax: 907.269.0489 dot.state.ak.us

PFAS Fact Sheet

October 2019

Per- and polyfluoroalkyl substances (PFAS) are a group of manmade chemicals used for a wide variety of residential, commercial, and industrial uses. PFAS are considered emerging environmental contaminants and the health effects are not well-known.

The presumed source of PFAS in groundwater in King Salmon is the use of a fire-fighting foam called aqueous film forming foam (AFFF). King Salmon Airport firefighters used the foam to extinguish hydrocarbon fires during training exercises and emergency events.

The Alaska Department of Transportation & Public Facilities (DOT&PF) has hired Shannon & Wilson to test private wells for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and other PFAS compounds.

The U.S. Environmental Protection Agency (EPA) lifetime health advisory (LHA) level for drinking water is **70 parts per trillion** for the sum of PFOS and PFOA.

We advise residents with test results above this level to not use their water for drinking or cooking. If your well is considered affected, you can continue to shower, clean, and do laundry.

Test results are typically available within four to five weeks of sample collection. If your well is found to have PFAS above the EPA LHA, DOT&PF will assist with access to an alternate source of drinking water.

PFAS are used in a large number of products ranging from fabric waterproofing compounds, nonstick cookware, stain-resistant carpeting, some food packaging, and firefighting foams. For the sampling area map: www.dot.alaska.gov/airportwater/ kingsalmon/

For questions about well testing:

Shannon & Wilson, Inc. Michael Jaramillo, Project Manager Phone: 907-458-3156 Email: mxj@shanwil.com

For regulatory questions:

Dept. of Environmental Conservation Bill O'Connell, Contaminated Sites Program Phone: 907-269-3057 Email: bill.oconnell@alaska.gov

For questions about PFAS and health:

Dept. of Health & Social Services Sarah Yoder, Public Health Specialist Phone: 907-269-8054 Email: sarah.yoder@alaska.gov

To file an insurance claim:

Dept. of Admin., Risk Management Sheri Gray, Risk Manager Phone: 907-465-5724 Email: sheri.gray@alaska.gov

For questions about fire training and other inquiries:

Sammy Loud Cummings, DOT&PF Statewide Aviation Phone: 907-888-5671 Email: airportwater@alaska.gov

Appendix D QA/QC Summary

CONTENTS

QA/QC Summary

102582-009

QA/QC SUMMARY

QA/QC procedures assist in producing data of acceptable quality and reliability. Shannon & Wilson reviewed the analytical results for laboratory QC samples and conducted a QA assessment for this project. COC records and laboratory receipt forms were reviewed to check custody was not breached, sample holding times were met, and the samples were properly handled from the point of collection through analysis by the laboratory. Shannon & Wilson's QA review procedures allowed us to document the accuracy and precision of the analytical data, as well as check the analyses were sufficiently sensitive to detect analytes at levels below regulatory standards.

Shannon & Wilson reviewed analytical sample results (TestAmerica WOs 48588, 52782, 55873, 57929, and SGS WOs 1192542 and 1192543) for this project. The laboratory reports, including case narratives describing laboratory QA results, along with completed DEC data review checklists, are included in Appendix A. Details regarding Shannon & Wilson's QA assessment are presented below.

SAMPLE HANDLING

Coolers containing water samples were shipped via Alaska Airlines Cargo to perform analyses identified on the COC. The coolers with water samples contained a temperature blank to measure whether samples were kept appropriately cold. Laboratory personnel measured the temperature blank at the time the samples arrived at each of their facilities; the temperature blank was within the proper temperature range upon arrival at the laboratories.

Our review of COC records and laboratory sample-receipt documents did not reveal sample-handling anomalies that would affect the quality or usability of the data, and the samples were processed within the appropriate method holding times.

ANALYTICAL SENSITIVITY

Shannon & Wilson compared water supply well sample limits of detection (LODs) to the DEC regulatory limits. For groundwater data, LODs were less than DEC-established limits, where applicable.

The laboratory analyzes a method blank with each sample batch to assess laboratory cross contamination and to detect analyte carryover during analysis. In TestAmerica WOs, PFAS compounds were not detected in the method blank samples.

Conductivity was detected in the associated method blank at a concentration greater than the limit of quantitation (LOQ) for SGS WOs 1192542 and 1192543. The associated samples have detected results greater than ten times the method blank conductivity. Project samples were not affected by the method blank detections for conductivity.

ACCURACY

The laboratory assessed the accuracy of its analytical procedures by analyzing laboratory control samples (LCS), LCS duplicate samples (LCSD), matrix spike samples (MS), MS duplicate samples (MSD), and laboratory duplicate samples. LCS/LCSD analysis allows the laboratory to evaluate their ability to recover analytes added to clean matrices.

LCS/LCSD samples were reported for TestAmerica WOs 48588, 52782, 55873 and 57929. Laboratory accuracy was also measured for each sample by assessing the recovery of analyte surrogates added to the individual project samples. For these WOs, the LCS/LCSD and surrogate recovery data were within laboratory control limits, indicating the sample results are accurate.

For the SGS WOs 1192542 and 1192543, accuracy of analytical procedures was assessed as follows:

- LCS/LCSD and laboratory duplicate samples were analyzed for TDS.
- LCS and MS/MSD samples were analyzed for nitrate, total nitrate/nitrite, chloride, fluoride, and sulfate.
- LCS and laboratory duplicate samples were analyzed for pH, conductivity, and alkalinity analyses.

Recovery failures of nitrate, total nitrate/nitrite, chloride, and fluoride were recorded in either MS or MS/MSD samples. However, the parent sample associated with the MS and/or MSD is not a part of the project sample set; project samples are not affected.

PRECISION

Shannon & Wilson submitted five field duplicate samples in the WOs. To evaluate data precision and reproducibility of Shannon & Wilson's sampling techniques, Shannon & Wilson calculated the relative percent difference (RPD) between the sample and its duplicate. Shannon & Wilson can only evaluate RPDs if the results of the analysis for both the sample and its duplicate are greater than the LOQs for a given analyte. The field-

duplicate RPDs for detected analytes were within the project-specified data quality objective of 30% for groundwater.

Shannon & Wilson also evaluated laboratory analytical precision using RPD calculations. The LCS/LCSDs and MS/MSDs provide information regarding the reproducibility of laboratory procedures and are therefore a measure of the laboratory's analytical precision. The RPD results for the LCS/LCSD and MS/MSDs were within acceptable laboratory QC limits. However, the SGS WOs 1192542 and 1192543 only reported LCS and MS samples for metals analysis. Shannon & Wilson has no measure of laboratory precision for this analysis.

DATA QUALITY SUMMARY

By working in general accordance with the proposed scope of services, Shannon & Wilson considers the samples collected for this project to be representative of site conditions at the locations and times they were obtained. Based on Shannon & Wilson's QA review, no samples were rejected as unusable due to QC failures. In general, the quality of the analytical data for this project does not appear to have been compromised by analytical irregularities and is adequate for the purposes of Shannon & Wilson's assessment.

Important Information About Your Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a

contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland